The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1974
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory |
Beschreibung: | 1 Online-Ressource (X, 174 p) |
ISBN: | 9789401017459 9789401017473 |
DOI: | 10.1007/978-94-010-1745-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423796 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1974 |||| o||u| ||||||eng d | ||
020 | |a 9789401017459 |c Online |9 978-94-010-1745-9 | ||
020 | |a 9789401017473 |c Print |9 978-94-010-1747-3 | ||
024 | 7 | |a 10.1007/978-94-010-1745-9 |2 doi | |
035 | |a (OCoLC)867182762 | ||
035 | |a (DE-599)BVBBV042423796 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Burgers, J. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Nonlinear Diffusion Equation |b Asymptotic Solutions and Statistical Problems |c by J. M. Burgers |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1974 | |
300 | |a 1 Online-Ressource (X, 174 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusionsgleichung |0 (DE-588)4149816-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diffusionsgleichung |0 (DE-588)4149816-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Diffusionsgleichung |0 (DE-588)4171749-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-1745-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859213 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099978276864 |
---|---|
any_adam_object | |
author | Burgers, J. M. |
author_facet | Burgers, J. M. |
author_role | aut |
author_sort | Burgers, J. M. |
author_variant | j m b jm jmb |
building | Verbundindex |
bvnumber | BV042423796 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)867182762 (DE-599)BVBBV042423796 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-010-1745-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03702nmm a2200589zc 4500</leader><controlfield tag="001">BV042423796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401017459</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-010-1745-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401017473</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-1747-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-1745-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867182762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burgers, J. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Nonlinear Diffusion Equation</subfield><subfield code="b">Asymptotic Solutions and Statistical Problems</subfield><subfield code="c">by J. M. Burgers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 174 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusionsgleichung</subfield><subfield code="0">(DE-588)4149816-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diffusionsgleichung</subfield><subfield code="0">(DE-588)4149816-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-1745-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859213</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423796 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401017459 9789401017473 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859213 |
oclc_num | 867182762 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 174 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Burgers, J. M. Verfasser aut The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems by J. M. Burgers Dordrecht Springer Netherlands 1974 1 Online-Ressource (X, 174 p) txt rdacontent c rdamedia cr rdacarrier Since the 'Introduction' to the main text gives an account of the way in which the problems treated in the following pages originated, this 'Preface' may be limited to an acknowledgement of the support the work has received. It started during the pe riod when I was professor of aero- and hydrodynamics at the Technical University in Delft, Netherlands, and many discussions with colleagues ha ve in:fluenced its devel opment. Oftheir names I mention here only that ofH. A. Kramers. Papers No. 1-13 ofthe list given at the end ofthe text were written during that period. Severa! ofthese were attempts to explore ideas which later had to be abandoned, but gradually a line of thought emerged which promised more definite results. This line began to come to the foreground in pa per No. 3 (1939}, while a preliminary formulation ofthe results was given in paper No. 12 (1954}. At that time, however, there still was missing a practica! method for manipulating a certain distribution function of central interest. A six months stay at the Hydrodynamics Laboratories ofthe California Institute of Technology, Pasadena, California (1950-1951}, was supported by a Contract with the Department of the Air F orce, N o. AF 33(038}-17207. A course of lectures was given during this period, which were published in typescript under the title 'On Turbulent Fluid Motion', as Report No. E-34. 1, July 1951, of the Hydrodynamics Laboratory Mathematics Global analysis (Mathematics) Analysis Mathematik Statistische Thermodynamik (DE-588)4126251-7 gnd rswk-swf Diffusionsgleichung (DE-588)4149816-1 gnd rswk-swf Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Diffusionsgleichung (DE-588)4149816-1 s 1\p DE-604 Nichtlineare Diffusionsgleichung (DE-588)4171749-1 s 2\p DE-604 Statistische Thermodynamik (DE-588)4126251-7 s 3\p DE-604 Turbulente Strömung (DE-588)4117265-6 s 4\p DE-604 https://doi.org/10.1007/978-94-010-1745-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burgers, J. M. The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems Mathematics Global analysis (Mathematics) Analysis Mathematik Statistische Thermodynamik (DE-588)4126251-7 gnd Diffusionsgleichung (DE-588)4149816-1 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4126251-7 (DE-588)4149816-1 (DE-588)4171749-1 (DE-588)4117265-6 |
title | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems |
title_auth | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems |
title_exact_search | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems |
title_full | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems by J. M. Burgers |
title_fullStr | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems by J. M. Burgers |
title_full_unstemmed | The Nonlinear Diffusion Equation Asymptotic Solutions and Statistical Problems by J. M. Burgers |
title_short | The Nonlinear Diffusion Equation |
title_sort | the nonlinear diffusion equation asymptotic solutions and statistical problems |
title_sub | Asymptotic Solutions and Statistical Problems |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Statistische Thermodynamik (DE-588)4126251-7 gnd Diffusionsgleichung (DE-588)4149816-1 gnd Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Statistische Thermodynamik Diffusionsgleichung Nichtlineare Diffusionsgleichung Turbulente Strömung |
url | https://doi.org/10.1007/978-94-010-1745-9 |
work_keys_str_mv | AT burgersjm thenonlineardiffusionequationasymptoticsolutionsandstatisticalproblems |