Five Place Tables: Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1937
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Instead of the old division of the right angle in 90° of 60' at 60" each, the following division finds ever more frequent application: one quadrant has 100 grades (gr), which in their turn are sub divided decimally in decigrades (dgr), centigrades (cgr), milligrades (mgr) and decimilligrades (dmgr). In using instruments upon which the quadrant is divided into 100 equal parts, in working with a calculating machine or a slide rule the new division has all the advantages and the old system all the disadvantages. Another important advantage of the new system is that the arcs take their place in the decimal system. One fourth of a meridian of the earth is 10.000 km, also 100 X 100 cgr; hence one km equals 1 cgr of the circumference-of the earth. If the arc of a longitude gr then circle between two given points on the earth be 14,26 their distance measured along this arc is 1426 km. It further follows that 1 mgr of the meridian equals 1 hm and 1 dmgr 10 meters. This simple calculation shows that for use in schools we should confine ourselves to milligrades (1 mgr = 3",24). Experts have assured me that for most practical applications milligrades are sufficiently accurate |
Beschreibung: | 1 Online-Ressource (VIII, 168 p) |
ISBN: | 9789401015868 9789401015882 |
DOI: | 10.1007/978-94-010-1586-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423795 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1937 |||| o||u| ||||||eng d | ||
020 | |a 9789401015868 |c Online |9 978-94-010-1586-8 | ||
020 | |a 9789401015882 |c Print |9 978-94-010-1588-2 | ||
024 | 7 | |a 10.1007/978-94-010-1586-8 |2 doi | |
035 | |a (OCoLC)879622194 | ||
035 | |a (DE-599)BVBBV042423795 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wijdenes, P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Five Place Tables |b Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables |c by P. Wijdenes |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1937 | |
300 | |a 1 Online-Ressource (VIII, 168 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Instead of the old division of the right angle in 90° of 60' at 60" each, the following division finds ever more frequent application: one quadrant has 100 grades (gr), which in their turn are sub divided decimally in decigrades (dgr), centigrades (cgr), milligrades (mgr) and decimilligrades (dmgr). In using instruments upon which the quadrant is divided into 100 equal parts, in working with a calculating machine or a slide rule the new division has all the advantages and the old system all the disadvantages. Another important advantage of the new system is that the arcs take their place in the decimal system. One fourth of a meridian of the earth is 10.000 km, also 100 X 100 cgr; hence one km equals 1 cgr of the circumference-of the earth. If the arc of a longitude gr then circle between two given points on the earth be 14,26 their distance measured along this arc is 1426 km. It further follows that 1 mgr of the meridian equals 1 hm and 1 dmgr 10 meters. This simple calculation shows that for use in schools we should confine ourselves to milligrades (1 mgr = 3",24). Experts have assured me that for most practical applications milligrades are sufficiently accurate | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-010-1586-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859212 |
Datensatz im Suchindex
_version_ | 1804153099974082560 |
---|---|
any_adam_object | |
author | Wijdenes, P. |
author_facet | Wijdenes, P. |
author_role | aut |
author_sort | Wijdenes, P. |
author_variant | p w pw |
building | Verbundindex |
bvnumber | BV042423795 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622194 (DE-599)BVBBV042423795 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-010-1586-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02512nmm a2200385zc 4500</leader><controlfield tag="001">BV042423795</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1937 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401015868</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-010-1586-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401015882</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-1588-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-010-1586-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423795</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wijdenes, P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Five Place Tables</subfield><subfield code="b">Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables</subfield><subfield code="c">by P. Wijdenes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1937</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 168 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Instead of the old division of the right angle in 90° of 60' at 60" each, the following division finds ever more frequent application: one quadrant has 100 grades (gr), which in their turn are sub divided decimally in decigrades (dgr), centigrades (cgr), milligrades (mgr) and decimilligrades (dmgr). In using instruments upon which the quadrant is divided into 100 equal parts, in working with a calculating machine or a slide rule the new division has all the advantages and the old system all the disadvantages. Another important advantage of the new system is that the arcs take their place in the decimal system. One fourth of a meridian of the earth is 10.000 km, also 100 X 100 cgr; hence one km equals 1 cgr of the circumference-of the earth. If the arc of a longitude gr then circle between two given points on the earth be 14,26 their distance measured along this arc is 1426 km. It further follows that 1 mgr of the meridian equals 1 hm and 1 dmgr 10 meters. This simple calculation shows that for use in schools we should confine ourselves to milligrades (1 mgr = 3",24). Experts have assured me that for most practical applications milligrades are sufficiently accurate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-010-1586-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859212</subfield></datafield></record></collection> |
id | DE-604.BV042423795 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401015868 9789401015882 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859212 |
oclc_num | 879622194 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 168 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1937 |
publishDateSearch | 1937 |
publishDateSort | 1937 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Wijdenes, P. Verfasser aut Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables by P. Wijdenes Dordrecht Springer Netherlands 1937 1 Online-Ressource (VIII, 168 p) txt rdacontent c rdamedia cr rdacarrier Instead of the old division of the right angle in 90° of 60' at 60" each, the following division finds ever more frequent application: one quadrant has 100 grades (gr), which in their turn are sub divided decimally in decigrades (dgr), centigrades (cgr), milligrades (mgr) and decimilligrades (dmgr). In using instruments upon which the quadrant is divided into 100 equal parts, in working with a calculating machine or a slide rule the new division has all the advantages and the old system all the disadvantages. Another important advantage of the new system is that the arcs take their place in the decimal system. One fourth of a meridian of the earth is 10.000 km, also 100 X 100 cgr; hence one km equals 1 cgr of the circumference-of the earth. If the arc of a longitude gr then circle between two given points on the earth be 14,26 their distance measured along this arc is 1426 km. It further follows that 1 mgr of the meridian equals 1 hm and 1 dmgr 10 meters. This simple calculation shows that for use in schools we should confine ourselves to milligrades (1 mgr = 3",24). Experts have assured me that for most practical applications milligrades are sufficiently accurate Mathematics Mathematics, general Mathematik https://doi.org/10.1007/978-94-010-1586-8 Verlag Volltext |
spellingShingle | Wijdenes, P. Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables Mathematics Mathematics, general Mathematik |
title | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables |
title_auth | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables |
title_exact_search | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables |
title_full | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables by P. Wijdenes |
title_fullStr | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables by P. Wijdenes |
title_full_unstemmed | Five Place Tables Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables by P. Wijdenes |
title_short | Five Place Tables |
title_sort | five place tables logarithms of integers logarithms and natural values of trigonometric functions in the decimal system for each grade from 0 to 100 grades with interpolation tables |
title_sub | Logarithms of Integers Logarithms and Natural Values of Trigonometric Functions in the Decimal System for each Grade From 0 to 100 Grades with Interpolation Tables |
topic | Mathematics Mathematics, general Mathematik |
topic_facet | Mathematics Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-94-010-1586-8 |
work_keys_str_mv | AT wijdenesp fiveplacetableslogarithmsofintegerslogarithmsandnaturalvaluesoftrigonometricfunctionsinthedecimalsystemforeachgradefrom0to100gradeswithinterpolationtables |