Finite Mixture Distributions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1981
|
Schriftenreihe: | Monographs on Applied Probability and Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population |
Beschreibung: | 1 Online-Ressource (XII, 143 p) |
ISBN: | 9789400958975 9789400958999 |
DOI: | 10.1007/978-94-009-5897-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423746 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1981 |||| o||u| ||||||eng d | ||
020 | |a 9789400958975 |c Online |9 978-94-009-5897-5 | ||
020 | |a 9789400958999 |c Print |9 978-94-009-5899-9 | ||
024 | 7 | |a 10.1007/978-94-009-5897-5 |2 doi | |
035 | |a (OCoLC)1185209038 | ||
035 | |a (DE-599)BVBBV042423746 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Everitt, B. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Mixture Distributions |c by B. S. Everitt, D. J. Hand |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1981 | |
300 | |a 1 Online-Ressource (XII, 143 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Monographs on Applied Probability and Statistics | |
500 | |a Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Zusammengesetzte Verteilung |0 (DE-588)4191153-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zusammengesetzte Verteilung |0 (DE-588)4191153-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsverteilung |0 (DE-588)4121894-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hand, D. J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-5897-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859163 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099858739200 |
---|---|
any_adam_object | |
author | Everitt, B. S. |
author_facet | Everitt, B. S. |
author_role | aut |
author_sort | Everitt, B. S. |
author_variant | b s e bs bse |
building | Verbundindex |
bvnumber | BV042423746 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185209038 (DE-599)BVBBV042423746 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-94-009-5897-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03242nmm a2200505zc 4500</leader><controlfield tag="001">BV042423746</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400958975</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-5897-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400958999</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-009-5899-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-5897-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185209038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423746</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Everitt, B. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Mixture Distributions</subfield><subfield code="c">by B. S. Everitt, D. J. Hand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 143 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs on Applied Probability and Statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zusammengesetzte Verteilung</subfield><subfield code="0">(DE-588)4191153-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zusammengesetzte Verteilung</subfield><subfield code="0">(DE-588)4191153-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsverteilung</subfield><subfield code="0">(DE-588)4121894-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hand, D. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-5897-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859163</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423746 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789400958975 9789400958999 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859163 |
oclc_num | 1185209038 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 143 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Monographs on Applied Probability and Statistics |
spelling | Everitt, B. S. Verfasser aut Finite Mixture Distributions by B. S. Everitt, D. J. Hand Dordrecht Springer Netherlands 1981 1 Online-Ressource (XII, 143 p) txt rdacontent c rdamedia cr rdacarrier Monographs on Applied Probability and Statistics Finite mixture distributions arise in a variety of applications ranging from the length distribution of fish to the content of DNA in the nuclei of liver cells. The literature surrounding them is large and goes back to the end of the last century when Karl Pearson published his well-known paper on estimating the five parameters in a mixture of two normal distributions. In this text we attempt to review this literature and in addition indicate the practical details of fitting such distributions to sample data. Our hope is that the monograph will be useful to statisticians interested in mixture distributions and to re search workers in other areas applying such distributions to their data. We would like to express our gratitude to Mrs Bertha Lakey for typing the manuscript. Institute oj Psychiatry B. S. Everitt University of London D. l Hand 1980 CHAPTER I General introduction 1. 1 Introduction This monograph is concerned with statistical distributions which can be expressed as superpositions of (usually simpler) component distributions. Such superpositions are termed mixture distributions or compound distributions. For example, the distribution of height in a population of children might be expressed as follows: h(height) = fg(height: age)f(age)d age (1. 1) where g(height: age) is the conditional distribution of height on age, and/(age) is the age distribution of the children in the population Science (General) Science, general Naturwissenschaft Zusammengesetzte Verteilung (DE-588)4191153-2 gnd rswk-swf Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd rswk-swf Zusammengesetzte Verteilung (DE-588)4191153-2 s 1\p DE-604 Wahrscheinlichkeitsverteilung (DE-588)4121894-2 s 2\p DE-604 Hand, D. J. Sonstige oth https://doi.org/10.1007/978-94-009-5897-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Everitt, B. S. Finite Mixture Distributions Science (General) Science, general Naturwissenschaft Zusammengesetzte Verteilung (DE-588)4191153-2 gnd Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd |
subject_GND | (DE-588)4191153-2 (DE-588)4121894-2 |
title | Finite Mixture Distributions |
title_auth | Finite Mixture Distributions |
title_exact_search | Finite Mixture Distributions |
title_full | Finite Mixture Distributions by B. S. Everitt, D. J. Hand |
title_fullStr | Finite Mixture Distributions by B. S. Everitt, D. J. Hand |
title_full_unstemmed | Finite Mixture Distributions by B. S. Everitt, D. J. Hand |
title_short | Finite Mixture Distributions |
title_sort | finite mixture distributions |
topic | Science (General) Science, general Naturwissenschaft Zusammengesetzte Verteilung (DE-588)4191153-2 gnd Wahrscheinlichkeitsverteilung (DE-588)4121894-2 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Zusammengesetzte Verteilung Wahrscheinlichkeitsverteilung |
url | https://doi.org/10.1007/978-94-009-5897-5 |
work_keys_str_mv | AT everittbs finitemixturedistributions AT handdj finitemixturedistributions |