The Homology of Banach and Topological Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1989
|
Schriftenreihe: | Mathematics and its Applications, Soviet Series
41 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 'Et moi •.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series |
Beschreibung: | 1 Online-Ressource (XX, 334 p) |
ISBN: | 9789400923546 9789401075602 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-009-2354-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423677 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9789400923546 |c Online |9 978-94-009-2354-6 | ||
020 | |a 9789401075602 |c Print |9 978-94-010-7560-2 | ||
024 | 7 | |a 10.1007/978-94-009-2354-6 |2 doi | |
035 | |a (OCoLC)879623555 | ||
035 | |a (DE-599)BVBBV042423677 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Helemskii, A. Ya |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Homology of Banach and Topological Algebras |c by A. Ya. Helemskii |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1989 | |
300 | |a 1 Online-Ressource (XX, 334 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and its Applications, Soviet Series |v 41 |x 0169-6378 | |
500 | |a 'Et moi •.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Banach-Algebra |0 (DE-588)4193187-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | 1 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 1 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-2354-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859094 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099726618624 |
---|---|
any_adam_object | |
author | Helemskii, A. Ya |
author_facet | Helemskii, A. Ya |
author_role | aut |
author_sort | Helemskii, A. Ya |
author_variant | a y h ay ayh |
building | Verbundindex |
bvnumber | BV042423677 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623555 (DE-599)BVBBV042423677 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-009-2354-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03069nmm a2200589zcb4500</leader><controlfield tag="001">BV042423677</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400923546</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-2354-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401075602</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-7560-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-2354-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helemskii, A. Ya</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Homology of Banach and Topological Algebras</subfield><subfield code="c">by A. Ya. Helemskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 334 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and its Applications, Soviet Series</subfield><subfield code="v">41</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">'Et moi •.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-2354-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859094</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423677 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789400923546 9789401075602 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859094 |
oclc_num | 879623555 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 334 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and its Applications, Soviet Series |
spelling | Helemskii, A. Ya Verfasser aut The Homology of Banach and Topological Algebras by A. Ya. Helemskii Dordrecht Springer Netherlands 1989 1 Online-Ressource (XX, 334 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and its Applications, Soviet Series 41 0169-6378 'Et moi •.... si j'avait su comment en revenir. One service mathematics has rendered the human race. It has put common sense back je n'y serais point aUe.' it belongs. on the topmost shelf next Jules Verne where to the dusty canister labelled 'discarded non· The series is divergent: therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series Mathematics Algebra Functional analysis Algebraic topology Functional Analysis Category Theory, Homological Algebra Algebraic Topology Mathematik Banach-Algebra (DE-588)4193187-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Homologietheorie (DE-588)4141714-8 s Banach-Algebra (DE-588)4193187-7 s 1\p DE-604 Topologie (DE-588)4060425-1 s 2\p DE-604 https://doi.org/10.1007/978-94-009-2354-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Helemskii, A. Ya The Homology of Banach and Topological Algebras Mathematics Algebra Functional analysis Algebraic topology Functional Analysis Category Theory, Homological Algebra Algebraic Topology Mathematik Banach-Algebra (DE-588)4193187-7 gnd Topologie (DE-588)4060425-1 gnd Homologietheorie (DE-588)4141714-8 gnd |
subject_GND | (DE-588)4193187-7 (DE-588)4060425-1 (DE-588)4141714-8 |
title | The Homology of Banach and Topological Algebras |
title_auth | The Homology of Banach and Topological Algebras |
title_exact_search | The Homology of Banach and Topological Algebras |
title_full | The Homology of Banach and Topological Algebras by A. Ya. Helemskii |
title_fullStr | The Homology of Banach and Topological Algebras by A. Ya. Helemskii |
title_full_unstemmed | The Homology of Banach and Topological Algebras by A. Ya. Helemskii |
title_short | The Homology of Banach and Topological Algebras |
title_sort | the homology of banach and topological algebras |
topic | Mathematics Algebra Functional analysis Algebraic topology Functional Analysis Category Theory, Homological Algebra Algebraic Topology Mathematik Banach-Algebra (DE-588)4193187-7 gnd Topologie (DE-588)4060425-1 gnd Homologietheorie (DE-588)4141714-8 gnd |
topic_facet | Mathematics Algebra Functional analysis Algebraic topology Functional Analysis Category Theory, Homological Algebra Algebraic Topology Mathematik Banach-Algebra Topologie Homologietheorie |
url | https://doi.org/10.1007/978-94-009-2354-6 |
work_keys_str_mv | AT helemskiiaya thehomologyofbanachandtopologicalalgebras |