Quasiconformal Mappings and Sobolev Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1990
|
Schriftenreihe: | Mathematics and its Applications (Soviet Series
54 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 'Ht moi, ... , si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'~re of this series |
Beschreibung: | 1 Online-Ressource (XX, 372 p) |
ISBN: | 9789400919228 9789401073585 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-009-1922-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423664 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9789400919228 |c Online |9 978-94-009-1922-8 | ||
020 | |a 9789401073585 |c Print |9 978-94-010-7358-5 | ||
024 | 7 | |a 10.1007/978-94-009-1922-8 |2 doi | |
035 | |a (OCoLC)879623625 | ||
035 | |a (DE-599)BVBBV042423664 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.42 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gol’dshtein, V. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quasiconformal Mappings and Sobolev Spaces |c by V. M. Gol’dshtein, Yu. G. Reshetnyak |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1990 | |
300 | |a 1 Online-Ressource (XX, 372 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and its Applications (Soviet Series |v 54 |x 0169-6378 | |
500 | |a 'Ht moi, ... , si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'~re of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quasikonforme Abbildung |0 (DE-588)4199279-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quasikonforme Abbildung |0 (DE-588)4199279-9 |D s |
689 | 0 | 1 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Reshetnyak, Yu. G. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-1922-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859081 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099694112768 |
---|---|
any_adam_object | |
author | Gol’dshtein, V. M. |
author_facet | Gol’dshtein, V. M. |
author_role | aut |
author_sort | Gol’dshtein, V. M. |
author_variant | v m g vm vmg |
building | Verbundindex |
bvnumber | BV042423664 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623625 (DE-599)BVBBV042423664 |
dewey-full | 515.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.42 |
dewey-search | 515.42 |
dewey-sort | 3515.42 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-009-1922-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02811nmm a2200517zcb4500</leader><controlfield tag="001">BV042423664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400919228</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-1922-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401073585</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-7358-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-1922-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423664</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.42</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gol’dshtein, V. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasiconformal Mappings and Sobolev Spaces</subfield><subfield code="c">by V. M. Gol’dshtein, Yu. G. Reshetnyak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 372 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and its Applications (Soviet Series</subfield><subfield code="v">54</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">'Ht moi, ... , si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'~re of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasikonforme Abbildung</subfield><subfield code="0">(DE-588)4199279-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasikonforme Abbildung</subfield><subfield code="0">(DE-588)4199279-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reshetnyak, Yu. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-1922-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859081</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423664 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9789400919228 9789401073585 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859081 |
oclc_num | 879623625 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 372 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and its Applications (Soviet Series |
spelling | Gol’dshtein, V. M. Verfasser aut Quasiconformal Mappings and Sobolev Spaces by V. M. Gol’dshtein, Yu. G. Reshetnyak Dordrecht Springer Netherlands 1990 1 Online-Ressource (XX, 372 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and its Applications (Soviet Series 54 0169-6378 'Ht moi, ... , si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'~re of this series Mathematics Functional equations Measure and Integration Difference and Functional Equations Real Functions Mathematik Quasikonforme Abbildung (DE-588)4199279-9 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Quasikonforme Abbildung (DE-588)4199279-9 s Sobolev-Raum (DE-588)4055345-0 s 1\p DE-604 Reshetnyak, Yu. G. Sonstige oth https://doi.org/10.1007/978-94-009-1922-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gol’dshtein, V. M. Quasiconformal Mappings and Sobolev Spaces Mathematics Functional equations Measure and Integration Difference and Functional Equations Real Functions Mathematik Quasikonforme Abbildung (DE-588)4199279-9 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
subject_GND | (DE-588)4199279-9 (DE-588)4055345-0 |
title | Quasiconformal Mappings and Sobolev Spaces |
title_auth | Quasiconformal Mappings and Sobolev Spaces |
title_exact_search | Quasiconformal Mappings and Sobolev Spaces |
title_full | Quasiconformal Mappings and Sobolev Spaces by V. M. Gol’dshtein, Yu. G. Reshetnyak |
title_fullStr | Quasiconformal Mappings and Sobolev Spaces by V. M. Gol’dshtein, Yu. G. Reshetnyak |
title_full_unstemmed | Quasiconformal Mappings and Sobolev Spaces by V. M. Gol’dshtein, Yu. G. Reshetnyak |
title_short | Quasiconformal Mappings and Sobolev Spaces |
title_sort | quasiconformal mappings and sobolev spaces |
topic | Mathematics Functional equations Measure and Integration Difference and Functional Equations Real Functions Mathematik Quasikonforme Abbildung (DE-588)4199279-9 gnd Sobolev-Raum (DE-588)4055345-0 gnd |
topic_facet | Mathematics Functional equations Measure and Integration Difference and Functional Equations Real Functions Mathematik Quasikonforme Abbildung Sobolev-Raum |
url | https://doi.org/10.1007/978-94-009-1922-8 |
work_keys_str_mv | AT goldshteinvm quasiconformalmappingsandsobolevspaces AT reshetnyakyug quasiconformalmappingsandsobolevspaces |