Symmetric and G-algebras: With Applications to Group Representations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1990
|
Schriftenreihe: | Mathematics and Its Applications
60 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 'Et moi •...• si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series |
Beschreibung: | 1 Online-Ressource (384p) |
ISBN: | 9789400905979 9789401067560 |
DOI: | 10.1007/978-94-009-0597-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423641 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9789400905979 |c Online |9 978-94-009-0597-9 | ||
020 | |a 9789401067560 |c Print |9 978-94-010-6756-0 | ||
024 | 7 | |a 10.1007/978-94-009-0597-9 |2 doi | |
035 | |a (OCoLC)1165442037 | ||
035 | |a (DE-599)BVBBV042423641 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Karpilovsky, Gregory |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetric and G-algebras |b With Applications to Group Representations |c by Gregory Karpilovsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1990 | |
300 | |a 1 Online-Ressource (384p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 60 | |
500 | |a 'Et moi •...• si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Group theory | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Frobenius-Algebra |0 (DE-588)4155476-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppenring |0 (DE-588)4158469-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppenring |0 (DE-588)4158469-7 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Symmetrische Gruppe |0 (DE-588)4184204-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Frobenius-Algebra |0 (DE-588)4155476-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-0597-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859058 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099633295360 |
---|---|
any_adam_object | |
author | Karpilovsky, Gregory |
author_facet | Karpilovsky, Gregory |
author_role | aut |
author_sort | Karpilovsky, Gregory |
author_variant | g k gk |
building | Verbundindex |
bvnumber | BV042423641 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165442037 (DE-599)BVBBV042423641 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-009-0597-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03197nmm a2200601zcb4500</leader><controlfield tag="001">BV042423641</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400905979</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-0597-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401067560</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6756-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-0597-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165442037</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423641</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Karpilovsky, Gregory</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetric and G-algebras</subfield><subfield code="b">With Applications to Group Representations</subfield><subfield code="c">by Gregory Karpilovsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (384p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">60</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">'Et moi •...• si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Frobenius-Algebra</subfield><subfield code="0">(DE-588)4155476-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppenring</subfield><subfield code="0">(DE-588)4158469-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrische Gruppe</subfield><subfield code="0">(DE-588)4184204-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Frobenius-Algebra</subfield><subfield code="0">(DE-588)4155476-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-0597-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859058</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423641 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9789400905979 9789401067560 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859058 |
oclc_num | 1165442037 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (384p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Karpilovsky, Gregory Verfasser aut Symmetric and G-algebras With Applications to Group Representations by Gregory Karpilovsky Dordrecht Springer Netherlands 1990 1 Online-Ressource (384p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 60 'Et moi •...• si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik Frobenius-Algebra (DE-588)4155476-0 gnd rswk-swf Symmetrische Gruppe (DE-588)4184204-2 gnd rswk-swf Gruppenring (DE-588)4158469-7 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Gruppenring (DE-588)4158469-7 s Darstellungstheorie (DE-588)4148816-7 s 1\p DE-604 Symmetrische Gruppe (DE-588)4184204-2 s 2\p DE-604 Frobenius-Algebra (DE-588)4155476-0 s 3\p DE-604 https://doi.org/10.1007/978-94-009-0597-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Karpilovsky, Gregory Symmetric and G-algebras With Applications to Group Representations Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik Frobenius-Algebra (DE-588)4155476-0 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd Gruppenring (DE-588)4158469-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4155476-0 (DE-588)4184204-2 (DE-588)4158469-7 (DE-588)4148816-7 |
title | Symmetric and G-algebras With Applications to Group Representations |
title_auth | Symmetric and G-algebras With Applications to Group Representations |
title_exact_search | Symmetric and G-algebras With Applications to Group Representations |
title_full | Symmetric and G-algebras With Applications to Group Representations by Gregory Karpilovsky |
title_fullStr | Symmetric and G-algebras With Applications to Group Representations by Gregory Karpilovsky |
title_full_unstemmed | Symmetric and G-algebras With Applications to Group Representations by Gregory Karpilovsky |
title_short | Symmetric and G-algebras |
title_sort | symmetric and g algebras with applications to group representations |
title_sub | With Applications to Group Representations |
topic | Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik Frobenius-Algebra (DE-588)4155476-0 gnd Symmetrische Gruppe (DE-588)4184204-2 gnd Gruppenring (DE-588)4158469-7 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik Frobenius-Algebra Symmetrische Gruppe Gruppenring Darstellungstheorie |
url | https://doi.org/10.1007/978-94-009-0597-9 |
work_keys_str_mv | AT karpilovskygregory symmetricandgalgebraswithapplicationstogrouprepresentations |