Rings, Modules, and the Total:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2004
|
Schriftenreihe: | Frontiers in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In a nutshell, the book deals with direct decompositions of modules and associated concepts. The central notion of "partially invertible homomorphisms", namely those that are factors of a non-zero idempotent, is introduced in a very accessible fashion. Units and regular elements are partially invertible. The "total" consists of all elements that are not partially invertible. The total contains the radical and the singular and cosingular submodules, but while the total is closed under right and left multiplication, it may not be closed under addition. Cases are discussed where the total is additively closed. The total is particularly suited to deal with the endomorphism ring of the direct sum of modules that all have local endomorphism rings and is applied in this case. Further applications are given for torsion-free Abelian groups |
Beschreibung: | 1 Online-Ressource (X, 138 p) |
ISBN: | 9783764378011 9783764371258 |
ISSN: | 1660-8046 |
DOI: | 10.1007/b96769 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423584 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783764378011 |c Online |9 978-3-7643-7801-1 | ||
020 | |a 9783764371258 |c Print |9 978-3-7643-7125-8 | ||
024 | 7 | |a 10.1007/b96769 |2 doi | |
035 | |a (OCoLC)845873840 | ||
035 | |a (DE-599)BVBBV042423584 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kasch, Friedrich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Rings, Modules, and the Total |c by Friedrich Kasch, Adolf Mader |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2004 | |
300 | |a 1 Online-Ressource (X, 138 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Frontiers in Mathematics |x 1660-8046 | |
500 | |a In a nutshell, the book deals with direct decompositions of modules and associated concepts. The central notion of "partially invertible homomorphisms", namely those that are factors of a non-zero idempotent, is introduced in a very accessible fashion. Units and regular elements are partially invertible. The "total" consists of all elements that are not partially invertible. The total contains the radical and the singular and cosingular submodules, but while the total is closed under right and left multiplication, it may not be closed under addition. Cases are discussed where the total is additively closed. The total is particularly suited to deal with the endomorphism ring of the direct sum of modules that all have local endomorphism rings and is applied in this case. Further applications are given for torsion-free Abelian groups | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Group theory | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Mader, Adolf |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/b96769 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859001 |
Datensatz im Suchindex
_version_ | 1804153099504320512 |
---|---|
any_adam_object | |
author | Kasch, Friedrich |
author_facet | Kasch, Friedrich |
author_role | aut |
author_sort | Kasch, Friedrich |
author_variant | f k fk |
building | Verbundindex |
bvnumber | BV042423584 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)845873840 (DE-599)BVBBV042423584 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b96769 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02213nmm a2200445zc 4500</leader><controlfield tag="001">BV042423584</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764378011</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7643-7801-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764371258</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-7125-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b96769</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845873840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423584</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kasch, Friedrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rings, Modules, and the Total</subfield><subfield code="c">by Friedrich Kasch, Adolf Mader</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 138 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in Mathematics</subfield><subfield code="x">1660-8046</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In a nutshell, the book deals with direct decompositions of modules and associated concepts. The central notion of "partially invertible homomorphisms", namely those that are factors of a non-zero idempotent, is introduced in a very accessible fashion. Units and regular elements are partially invertible. The "total" consists of all elements that are not partially invertible. The total contains the radical and the singular and cosingular submodules, but while the total is closed under right and left multiplication, it may not be closed under addition. Cases are discussed where the total is additively closed. The total is particularly suited to deal with the endomorphism ring of the direct sum of modules that all have local endomorphism rings and is applied in this case. Further applications are given for torsion-free Abelian groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mader, Adolf</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b96769</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859001</subfield></datafield></record></collection> |
id | DE-604.BV042423584 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783764378011 9783764371258 |
issn | 1660-8046 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859001 |
oclc_num | 845873840 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 138 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Frontiers in Mathematics |
spelling | Kasch, Friedrich Verfasser aut Rings, Modules, and the Total by Friedrich Kasch, Adolf Mader Basel Birkhäuser Basel 2004 1 Online-Ressource (X, 138 p) txt rdacontent c rdamedia cr rdacarrier Frontiers in Mathematics 1660-8046 In a nutshell, the book deals with direct decompositions of modules and associated concepts. The central notion of "partially invertible homomorphisms", namely those that are factors of a non-zero idempotent, is introduced in a very accessible fashion. Units and regular elements are partially invertible. The "total" consists of all elements that are not partially invertible. The total contains the radical and the singular and cosingular submodules, but while the total is closed under right and left multiplication, it may not be closed under addition. Cases are discussed where the total is additively closed. The total is particularly suited to deal with the endomorphism ring of the direct sum of modules that all have local endomorphism rings and is applied in this case. Further applications are given for torsion-free Abelian groups Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik Mader, Adolf Sonstige oth https://doi.org/10.1007/b96769 Verlag Volltext |
spellingShingle | Kasch, Friedrich Rings, Modules, and the Total Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik |
title | Rings, Modules, and the Total |
title_auth | Rings, Modules, and the Total |
title_exact_search | Rings, Modules, and the Total |
title_full | Rings, Modules, and the Total by Friedrich Kasch, Adolf Mader |
title_fullStr | Rings, Modules, and the Total by Friedrich Kasch, Adolf Mader |
title_full_unstemmed | Rings, Modules, and the Total by Friedrich Kasch, Adolf Mader |
title_short | Rings, Modules, and the Total |
title_sort | rings modules and the total |
topic | Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik |
topic_facet | Mathematics Algebra Group theory Associative Rings and Algebras Group Theory and Generalizations Mathematik |
url | https://doi.org/10.1007/b96769 |
work_keys_str_mv | AT kaschfriedrich ringsmodulesandthetotal AT maderadolf ringsmodulesandthetotal |