Semiconductor Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Vienna
Springer Vienna
1990
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In recent years the mathematical modeling of charge transport in semiconductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simulation of the electrical behavior of semiconductor devices, are by now mathematically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffusion model is of a highly specialized nature. It concentrates on the exploration of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and WignerPoisson equations) for the simulation of certain highly integrated devices |
Beschreibung: | 1 Online-Ressource (X, 248 p) |
ISBN: | 9783709169612 9783211821572 |
DOI: | 10.1007/978-3-7091-6961-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423577 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783709169612 |c Online |9 978-3-7091-6961-2 | ||
020 | |a 9783211821572 |c Print |9 978-3-211-82157-2 | ||
024 | 7 | |a 10.1007/978-3-7091-6961-2 |2 doi | |
035 | |a (OCoLC)1184384013 | ||
035 | |a (DE-599)BVBBV042423577 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Markowich, Peter A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Semiconductor Equations |c by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser |
264 | 1 | |a Vienna |b Springer Vienna |c 1990 | |
300 | |a 1 Online-Ressource (X, 248 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In recent years the mathematical modeling of charge transport in semiconductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simulation of the electrical behavior of semiconductor devices, are by now mathematically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffusion model is of a highly specialized nature. It concentrates on the exploration of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and WignerPoisson equations) for the simulation of certain highly integrated devices | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Chemistry / Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Engineering | |
650 | 4 | |a Electronics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Math. Applications in Chemistry | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Electronics and Microelectronics, Instrumentation | |
650 | 4 | |a Chemie | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Halbleiter |0 (DE-588)4022993-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transportgleichung |0 (DE-588)4185928-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ladungstransport |0 (DE-588)4166400-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 0 | 1 | |a Ladungstransport |0 (DE-588)4166400-0 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 1 | 1 | |a Transportgleichung |0 (DE-588)4185928-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Ringhofer, Christian A. |e Sonstige |4 oth | |
700 | 1 | |a Schmeiser, Christian |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-6961-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858994 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099470766080 |
---|---|
any_adam_object | |
author | Markowich, Peter A. |
author_facet | Markowich, Peter A. |
author_role | aut |
author_sort | Markowich, Peter A. |
author_variant | p a m pa pam |
building | Verbundindex |
bvnumber | BV042423577 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184384013 (DE-599)BVBBV042423577 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-7091-6961-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03920nmm a2200685zc 4500</leader><controlfield tag="001">BV042423577</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709169612</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7091-6961-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783211821572</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-211-82157-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-6961-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184384013</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Markowich, Peter A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semiconductor Equations</subfield><subfield code="c">by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 248 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In recent years the mathematical modeling of charge transport in semiconductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simulation of the electrical behavior of semiconductor devices, are by now mathematically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffusion model is of a highly specialized nature. It concentrates on the exploration of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and WignerPoisson equations) for the simulation of certain highly integrated devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronics and Microelectronics, Instrumentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transportgleichung</subfield><subfield code="0">(DE-588)4185928-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ladungstransport</subfield><subfield code="0">(DE-588)4166400-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ladungstransport</subfield><subfield code="0">(DE-588)4166400-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Transportgleichung</subfield><subfield code="0">(DE-588)4185928-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ringhofer, Christian A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmeiser, Christian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-6961-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858994</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423577 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783709169612 9783211821572 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858994 |
oclc_num | 1184384013 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 248 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Vienna |
record_format | marc |
spelling | Markowich, Peter A. Verfasser aut Semiconductor Equations by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser Vienna Springer Vienna 1990 1 Online-Ressource (X, 248 p) txt rdacontent c rdamedia cr rdacarrier In recent years the mathematical modeling of charge transport in semiconductors has become a thriving area in applied mathematics. The drift diffusion equations, which constitute the most popular model for the simulation of the electrical behavior of semiconductor devices, are by now mathematically quite well understood. As a consequence numerical methods have been developed, which allow for reasonably efficient computer simulations in many cases of practical relevance. Nowadays, research on the drift diffusion model is of a highly specialized nature. It concentrates on the exploration of possibly more efficient discretization methods (e.g. mixed finite elements, streamline diffusion), on the improvement of the performance of nonlinear iteration and linear equation solvers, and on three dimensional applications. The ongoing miniaturization of semiconductor devices has prompted a shift of the focus of the modeling research lately, since the drift diffusion model does not account well for charge transport in ultra integrated devices. Extensions of the drift diffusion model (so called hydrodynamic models) are under investigation for the modeling of hot electron effects in submicron MOS-transistors, and supercomputer technology has made it possible to employ kinetic models (semiclassical Boltzmann-Poisson and WignerPoisson equations) for the simulation of certain highly integrated devices Mathematics Chemistry / Mathematics Global analysis (Mathematics) Engineering Electronics Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Electronics and Microelectronics, Instrumentation Chemie Ingenieurwissenschaften Mathematik Halbleiter (DE-588)4022993-2 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Transportgleichung (DE-588)4185928-5 gnd rswk-swf Ladungstransport (DE-588)4166400-0 gnd rswk-swf Halbleiter (DE-588)4022993-2 s Ladungstransport (DE-588)4166400-0 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Transportgleichung (DE-588)4185928-5 s 2\p DE-604 Ringhofer, Christian A. Sonstige oth Schmeiser, Christian Sonstige oth https://doi.org/10.1007/978-3-7091-6961-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Markowich, Peter A. Semiconductor Equations Mathematics Chemistry / Mathematics Global analysis (Mathematics) Engineering Electronics Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Electronics and Microelectronics, Instrumentation Chemie Ingenieurwissenschaften Mathematik Halbleiter (DE-588)4022993-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd Transportgleichung (DE-588)4185928-5 gnd Ladungstransport (DE-588)4166400-0 gnd |
subject_GND | (DE-588)4022993-2 (DE-588)4114528-8 (DE-588)4185928-5 (DE-588)4166400-0 |
title | Semiconductor Equations |
title_auth | Semiconductor Equations |
title_exact_search | Semiconductor Equations |
title_full | Semiconductor Equations by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser |
title_fullStr | Semiconductor Equations by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser |
title_full_unstemmed | Semiconductor Equations by Peter A. Markowich, Christian A. Ringhofer, Christian Schmeiser |
title_short | Semiconductor Equations |
title_sort | semiconductor equations |
topic | Mathematics Chemistry / Mathematics Global analysis (Mathematics) Engineering Electronics Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Electronics and Microelectronics, Instrumentation Chemie Ingenieurwissenschaften Mathematik Halbleiter (DE-588)4022993-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd Transportgleichung (DE-588)4185928-5 gnd Ladungstransport (DE-588)4166400-0 gnd |
topic_facet | Mathematics Chemistry / Mathematics Global analysis (Mathematics) Engineering Electronics Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Electronics and Microelectronics, Instrumentation Chemie Ingenieurwissenschaften Mathematik Halbleiter Mathematisches Modell Transportgleichung Ladungstransport |
url | https://doi.org/10.1007/978-3-7091-6961-2 |
work_keys_str_mv | AT markowichpetera semiconductorequations AT ringhoferchristiana semiconductorequations AT schmeiserchristian semiconductorequations |