Lectures on the Mordell-Weil Theorem:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1997
|
Ausgabe: | 3rd edition |
Schriftenreihe: | Aspects of Mathematics
15 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a translation of "Autour du theoreme de Mordell-Well", a course given by J. -P. Serre at the College de France in 1980 and 1981. These notes were originally written weekly by Michel Waldschmidt and have been reproduced by Publications Mathematiques de l'Universite de Paris VI, by photocopying the handwritten manuscript. The present translation follows roughly the French text, with many modi fications and rearrangements. We have not tried to give a detailed account of the new results due to Faltings, Raynaud, Gross-Zagier . . . ; we have just mentioned them in notes at the appropriate places, and given bibliographical references. M. L. Brown Paris, Fall 1988 I. -P. Serre VII CONTENTS 1. Summary. 1 1. 1. Heights. 3 1. 2. The Mordell-Weil theorem and Mordell's conjecture. 3 1. 3. Integral points on algebraic curves. Siegel's theorem. 4 1. 4. Baker's method. 5 1. 5. Hilbert's irreducibility theorem. Sieves. 5 2. Heights. 7 2. 1. The product formula. 7 2. 2. Heights on P m(K). 10 2. 3. Properties of heights. 13 2. 4. Northcott's finiteness theorem. 16 2. 5. Quantitative form of Northcott's theorem. 17 '2. 6. Height associated to a morphism |
Beschreibung: | 1 Online-Ressource (X, 218 p) |
ISBN: | 9783663106326 9783663106340 |
ISSN: | 0179-2156 |
DOI: | 10.1007/978-3-663-10632-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423557 | ||
003 | DE-604 | ||
005 | 20180131 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783663106326 |c Online |9 978-3-663-10632-6 | ||
020 | |a 9783663106340 |c Print |9 978-3-663-10634-0 | ||
024 | 7 | |a 10.1007/978-3-663-10632-6 |2 doi | |
035 | |a (OCoLC)1184500412 | ||
035 | |a (DE-599)BVBBV042423557 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Serre, Jean-Pierre |d 1926- |e Verfasser |0 (DE-588)142283126 |4 aut | |
245 | 1 | 0 | |a Lectures on the Mordell-Weil Theorem |c by Jean-Pierre Serre ; edited by Martin Brown |
250 | |a 3rd edition | ||
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1997 | |
300 | |a 1 Online-Ressource (X, 218 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Aspects of Mathematics |v 15 |x 0179-2156 | |
500 | |a This is a translation of "Autour du theoreme de Mordell-Well", a course given by J. -P. Serre at the College de France in 1980 and 1981. These notes were originally written weekly by Michel Waldschmidt and have been reproduced by Publications Mathematiques de l'Universite de Paris VI, by photocopying the handwritten manuscript. The present translation follows roughly the French text, with many modi fications and rearrangements. We have not tried to give a detailed account of the new results due to Faltings, Raynaud, Gross-Zagier . . . ; we have just mentioned them in notes at the appropriate places, and given bibliographical references. M. L. Brown Paris, Fall 1988 I. -P. Serre VII CONTENTS 1. Summary. 1 1. 1. Heights. 3 1. 2. The Mordell-Weil theorem and Mordell's conjecture. 3 1. 3. Integral points on algebraic curves. Siegel's theorem. 4 1. 4. Baker's method. 5 1. 5. Hilbert's irreducibility theorem. Sieves. 5 2. Heights. 7 2. 1. The product formula. 7 2. 2. Heights on P m(K). 10 2. 3. Properties of heights. 13 2. 4. Northcott's finiteness theorem. 16 2. 5. Quantitative form of Northcott's theorem. 17 '2. 6. Height associated to a morphism | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Mordell-Weil-Theorem |0 (DE-588)4215929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mordell-Weil-Theorem |0 (DE-588)4215929-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mordell-Vermutung |0 (DE-588)4123793-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Brown, Martin |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-10632-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858974 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099423580160 |
---|---|
any_adam_object | |
author | Serre, Jean-Pierre 1926- |
author_GND | (DE-588)142283126 |
author_facet | Serre, Jean-Pierre 1926- |
author_role | aut |
author_sort | Serre, Jean-Pierre 1926- |
author_variant | j p s jps |
building | Verbundindex |
bvnumber | BV042423557 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184500412 (DE-599)BVBBV042423557 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-663-10632-6 |
edition | 3rd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03027nmm a2200517zcb4500</leader><controlfield tag="001">BV042423557</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180131 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663106326</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-10632-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663106340</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-663-10634-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-10632-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184500412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423557</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serre, Jean-Pierre</subfield><subfield code="d">1926-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142283126</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the Mordell-Weil Theorem</subfield><subfield code="c">by Jean-Pierre Serre ; edited by Martin Brown</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 218 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Aspects of Mathematics</subfield><subfield code="v">15</subfield><subfield code="x">0179-2156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a translation of "Autour du theoreme de Mordell-Well", a course given by J. -P. Serre at the College de France in 1980 and 1981. These notes were originally written weekly by Michel Waldschmidt and have been reproduced by Publications Mathematiques de l'Universite de Paris VI, by photocopying the handwritten manuscript. The present translation follows roughly the French text, with many modi fications and rearrangements. We have not tried to give a detailed account of the new results due to Faltings, Raynaud, Gross-Zagier . . . ; we have just mentioned them in notes at the appropriate places, and given bibliographical references. M. L. Brown Paris, Fall 1988 I. -P. Serre VII CONTENTS 1. Summary. 1 1. 1. Heights. 3 1. 2. The Mordell-Weil theorem and Mordell's conjecture. 3 1. 3. Integral points on algebraic curves. Siegel's theorem. 4 1. 4. Baker's method. 5 1. 5. Hilbert's irreducibility theorem. Sieves. 5 2. Heights. 7 2. 1. The product formula. 7 2. 2. Heights on P m(K). 10 2. 3. Properties of heights. 13 2. 4. Northcott's finiteness theorem. 16 2. 5. Quantitative form of Northcott's theorem. 17 '2. 6. Height associated to a morphism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mordell-Weil-Theorem</subfield><subfield code="0">(DE-588)4215929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mordell-Weil-Theorem</subfield><subfield code="0">(DE-588)4215929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mordell-Vermutung</subfield><subfield code="0">(DE-588)4123793-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brown, Martin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-10632-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858974</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423557 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783663106326 9783663106340 |
issn | 0179-2156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858974 |
oclc_num | 1184500412 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 218 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Aspects of Mathematics |
spelling | Serre, Jean-Pierre 1926- Verfasser (DE-588)142283126 aut Lectures on the Mordell-Weil Theorem by Jean-Pierre Serre ; edited by Martin Brown 3rd edition Wiesbaden Vieweg+Teubner Verlag 1997 1 Online-Ressource (X, 218 p) txt rdacontent c rdamedia cr rdacarrier Aspects of Mathematics 15 0179-2156 This is a translation of "Autour du theoreme de Mordell-Well", a course given by J. -P. Serre at the College de France in 1980 and 1981. These notes were originally written weekly by Michel Waldschmidt and have been reproduced by Publications Mathematiques de l'Universite de Paris VI, by photocopying the handwritten manuscript. The present translation follows roughly the French text, with many modi fications and rearrangements. We have not tried to give a detailed account of the new results due to Faltings, Raynaud, Gross-Zagier . . . ; we have just mentioned them in notes at the appropriate places, and given bibliographical references. M. L. Brown Paris, Fall 1988 I. -P. Serre VII CONTENTS 1. Summary. 1 1. 1. Heights. 3 1. 2. The Mordell-Weil theorem and Mordell's conjecture. 3 1. 3. Integral points on algebraic curves. Siegel's theorem. 4 1. 4. Baker's method. 5 1. 5. Hilbert's irreducibility theorem. Sieves. 5 2. Heights. 7 2. 1. The product formula. 7 2. 2. Heights on P m(K). 10 2. 3. Properties of heights. 13 2. 4. Northcott's finiteness theorem. 16 2. 5. Quantitative form of Northcott's theorem. 17 '2. 6. Height associated to a morphism Engineering Engineering, general Ingenieurwissenschaften Mordell-Weil-Theorem (DE-588)4215929-5 gnd rswk-swf Mordell-Vermutung (DE-588)4123793-6 gnd rswk-swf Mordell-Weil-Theorem (DE-588)4215929-5 s 1\p DE-604 Mordell-Vermutung (DE-588)4123793-6 s 2\p DE-604 Brown, Martin Sonstige oth https://doi.org/10.1007/978-3-663-10632-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Serre, Jean-Pierre 1926- Lectures on the Mordell-Weil Theorem Engineering Engineering, general Ingenieurwissenschaften Mordell-Weil-Theorem (DE-588)4215929-5 gnd Mordell-Vermutung (DE-588)4123793-6 gnd |
subject_GND | (DE-588)4215929-5 (DE-588)4123793-6 |
title | Lectures on the Mordell-Weil Theorem |
title_auth | Lectures on the Mordell-Weil Theorem |
title_exact_search | Lectures on the Mordell-Weil Theorem |
title_full | Lectures on the Mordell-Weil Theorem by Jean-Pierre Serre ; edited by Martin Brown |
title_fullStr | Lectures on the Mordell-Weil Theorem by Jean-Pierre Serre ; edited by Martin Brown |
title_full_unstemmed | Lectures on the Mordell-Weil Theorem by Jean-Pierre Serre ; edited by Martin Brown |
title_short | Lectures on the Mordell-Weil Theorem |
title_sort | lectures on the mordell weil theorem |
topic | Engineering Engineering, general Ingenieurwissenschaften Mordell-Weil-Theorem (DE-588)4215929-5 gnd Mordell-Vermutung (DE-588)4123793-6 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Mordell-Weil-Theorem Mordell-Vermutung |
url | https://doi.org/10.1007/978-3-663-10632-6 |
work_keys_str_mv | AT serrejeanpierre lecturesonthemordellweiltheorem AT brownmartin lecturesonthemordellweiltheorem |