Hyperbolic Conservation Laws in Continuum Physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
325 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The seeds of Continuum Physics were planted with the works of the natural philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth century, the trees were fully grown and ready to yield fruit. It was in this environment that the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems in divergence form, commonly called "hyperbolic conservation laws"; and these two subjects have been traveling hand-in-hand over the past one hundred and fifty years. This book aims at presenting the theory of hyperbolic conservation laws from the standpoint of its genetic relation to Continuum Physics. Even though research is still marching at a brisk pace, both fields have attained by now the degree of maturity that would warrant the writing of such an exposition. In the realm of Continuum Physics, material bodies are realized as continuous media, and so-called "extensive quantities", such as mass, momentum and energy, are monitored through the fields of their densities, which are related by balance laws and constitutive equations. A self-contained, though skeletal, introduction to this branch of classical physics is presented in Chapter II. The reader may flesh it out with the help of a specialized text on the subject |
Beschreibung: | 1 Online-Ressource (XVI, 446 p) |
ISBN: | 9783662220191 9783662220214 |
DOI: | 10.1007/978-3-662-22019-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423506 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662220191 |c Online |9 978-3-662-22019-1 | ||
020 | |a 9783662220214 |c Print |9 978-3-662-22021-4 | ||
024 | 7 | |a 10.1007/978-3-662-22019-1 |2 doi | |
035 | |a (OCoLC)1184500655 | ||
035 | |a (DE-599)BVBBV042423506 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dafermos, Constantine M. |d 1941- |e Verfasser |0 (DE-588)121360229 |4 aut | |
245 | 1 | 0 | |a Hyperbolic Conservation Laws in Continuum Physics |c by Constantine M. Dafermos |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XVI, 446 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 325 | |
500 | |a The seeds of Continuum Physics were planted with the works of the natural philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth century, the trees were fully grown and ready to yield fruit. It was in this environment that the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems in divergence form, commonly called "hyperbolic conservation laws"; and these two subjects have been traveling hand-in-hand over the past one hundred and fifty years. This book aims at presenting the theory of hyperbolic conservation laws from the standpoint of its genetic relation to Continuum Physics. Even though research is still marching at a brisk pace, both fields have attained by now the degree of maturity that would warrant the writing of such an exposition. In the realm of Continuum Physics, material bodies are realized as continuous media, and so-called "extensive quantities", such as mass, momentum and energy, are monitored through the fields of their densities, which are related by balance laws and constitutive equations. A self-contained, though skeletal, introduction to this branch of classical physics is presented in Chapter II. The reader may flesh it out with the help of a specialized text on the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 2 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |D s |
689 | 1 | 1 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 1 | 2 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 325 |w (DE-604)BV049758308 |9 325 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-22019-1 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079047288389632 |
---|---|
adam_text | |
any_adam_object | |
author | Dafermos, Constantine M. 1941- |
author_GND | (DE-588)121360229 |
author_facet | Dafermos, Constantine M. 1941- |
author_role | aut |
author_sort | Dafermos, Constantine M. 1941- |
author_variant | c m d cm cmd |
building | Verbundindex |
bvnumber | BV042423506 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184500655 (DE-599)BVBBV042423506 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-22019-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042423506</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662220191</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-22019-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662220214</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-22021-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-22019-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184500655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423506</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dafermos, Constantine M.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121360229</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic Conservation Laws in Continuum Physics</subfield><subfield code="c">by Constantine M. Dafermos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 446 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The seeds of Continuum Physics were planted with the works of the natural philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth century, the trees were fully grown and ready to yield fruit. It was in this environment that the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems in divergence form, commonly called "hyperbolic conservation laws"; and these two subjects have been traveling hand-in-hand over the past one hundred and fifty years. This book aims at presenting the theory of hyperbolic conservation laws from the standpoint of its genetic relation to Continuum Physics. Even though research is still marching at a brisk pace, both fields have attained by now the degree of maturity that would warrant the writing of such an exposition. In the realm of Continuum Physics, material bodies are realized as continuous media, and so-called "extensive quantities", such as mass, momentum and energy, are monitored through the fields of their densities, which are related by balance laws and constitutive equations. A self-contained, though skeletal, introduction to this branch of classical physics is presented in Chapter II. The reader may flesh it out with the help of a specialized text on the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">325</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">325</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-22019-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4179998-7 Monografische Reihe gnd-content |
genre_facet | Monografische Reihe |
id | DE-604.BV042423506 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:46Z |
institution | BVB |
isbn | 9783662220191 9783662220214 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858923 |
oclc_num | 1184500655 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 446 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Dafermos, Constantine M. 1941- Verfasser (DE-588)121360229 aut Hyperbolic Conservation Laws in Continuum Physics by Constantine M. Dafermos Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XVI, 446 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 325 The seeds of Continuum Physics were planted with the works of the natural philosophers of the eighteenth century, most notably Euler; by the mid-nineteenth century, the trees were fully grown and ready to yield fruit. It was in this environment that the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems in divergence form, commonly called "hyperbolic conservation laws"; and these two subjects have been traveling hand-in-hand over the past one hundred and fifty years. This book aims at presenting the theory of hyperbolic conservation laws from the standpoint of its genetic relation to Continuum Physics. Even though research is still marching at a brisk pace, both fields have attained by now the degree of maturity that would warrant the writing of such an exposition. In the realm of Continuum Physics, material bodies are realized as continuous media, and so-called "extensive quantities", such as mass, momentum and energy, are monitored through the fields of their densities, which are related by balance laws and constitutive equations. A self-contained, though skeletal, introduction to this branch of classical physics is presented in Chapter II. The reader may flesh it out with the help of a specialized text on the subject Mathematics Differential equations, partial Mechanics Thermodynamics Partial Differential Equations Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Kontinuumsphysik (DE-588)4165166-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Hyperbolische Differentialgleichung (DE-588)4131213-2 s Kontinuumsphysik (DE-588)4165166-2 s 1\p DE-604 Hyperbolisches System (DE-588)4191897-6 s 2\p DE-604 Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 325 (DE-604)BV049758308 325 https://doi.org/10.1007/978-3-662-22019-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dafermos, Constantine M. 1941- Hyperbolic Conservation Laws in Continuum Physics Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics Mathematics Differential equations, partial Mechanics Thermodynamics Partial Differential Equations Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Kontinuumsphysik (DE-588)4165166-2 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4131214-4 (DE-588)4191897-6 (DE-588)4165166-2 |
title | Hyperbolic Conservation Laws in Continuum Physics |
title_auth | Hyperbolic Conservation Laws in Continuum Physics |
title_exact_search | Hyperbolic Conservation Laws in Continuum Physics |
title_full | Hyperbolic Conservation Laws in Continuum Physics by Constantine M. Dafermos |
title_fullStr | Hyperbolic Conservation Laws in Continuum Physics by Constantine M. Dafermos |
title_full_unstemmed | Hyperbolic Conservation Laws in Continuum Physics by Constantine M. Dafermos |
title_short | Hyperbolic Conservation Laws in Continuum Physics |
title_sort | hyperbolic conservation laws in continuum physics |
topic | Mathematics Differential equations, partial Mechanics Thermodynamics Partial Differential Equations Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Kontinuumsphysik (DE-588)4165166-2 gnd |
topic_facet | Mathematics Differential equations, partial Mechanics Thermodynamics Partial Differential Equations Mathematik Hyperbolische Differentialgleichung Erhaltungssatz Hyperbolisches System Kontinuumsphysik |
url | https://doi.org/10.1007/978-3-662-22019-1 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT dafermosconstantinem hyperbolicconservationlawsincontinuumphysics |