Combinatorial Optimization: Theory and Algorithms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Algorithms and Combinatorics
21 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Combinatorial optimization is one of the youngest and most active areas of discrete mathematics, and is probably its driving force today. It became a subject in its own right about 50 years ago. This book describes the most important ideas, theoretical results, and algorithms in combinatorial optimization. We have conceived it as an advanced graduate text which can also be used as an up-to-date reference work for current research. The book includes the essential fundamentals of graph theory, linear and integer programming, and complexity theory. It covers classical topics in combinatorial optimization as well as very recent ones. The emphasis is on theoretical results and algorithms with provably good performance. Applications and heuristics are mentioned only occasionally. Combinatorial optimization has its roots in combinatorics, operations research, and theoretical computer science. A main motivation is that thousands of real-life problems can be formulated as abstract combinatorial optimization problems. We focus on the detailed study of classical problems which occur in many different contexts, together with the underlying theory. Most combinatorial optimization problems can be formulated naturally in terms of graphs and as (integer) linear programs. Therefore this book starts, after an introduction, by reviewing basic graph theory and proving those results in linear and integer programming which are most relevant for combinatorial optimization |
Beschreibung: | 1 Online-Ressource (XI, 530 p) |
ISBN: | 9783662217085 9783662217108 |
ISSN: | 0937-5511 |
DOI: | 10.1007/978-3-662-21708-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423500 | ||
003 | DE-604 | ||
005 | 20190507 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662217085 |c Online |9 978-3-662-21708-5 | ||
020 | |a 9783662217108 |c Print |9 978-3-662-21710-8 | ||
024 | 7 | |a 10.1007/978-3-662-21708-5 |2 doi | |
035 | |a (OCoLC)864085652 | ||
035 | |a (DE-599)BVBBV042423500 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 913f |2 stub | ||
100 | 1 | |a Korte, Bernhard |d 1938- |e Verfasser |0 (DE-588)139321802 |4 aut | |
245 | 1 | 0 | |a Combinatorial Optimization |b Theory and Algorithms |c by Bernhard Korte, Jens Vygen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XI, 530 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Algorithms and Combinatorics |v 21 |x 0937-5511 | |
500 | |a Combinatorial optimization is one of the youngest and most active areas of discrete mathematics, and is probably its driving force today. It became a subject in its own right about 50 years ago. This book describes the most important ideas, theoretical results, and algorithms in combinatorial optimization. We have conceived it as an advanced graduate text which can also be used as an up-to-date reference work for current research. The book includes the essential fundamentals of graph theory, linear and integer programming, and complexity theory. It covers classical topics in combinatorial optimization as well as very recent ones. The emphasis is on theoretical results and algorithms with provably good performance. Applications and heuristics are mentioned only occasionally. Combinatorial optimization has its roots in combinatorics, operations research, and theoretical computer science. A main motivation is that thousands of real-life problems can be formulated as abstract combinatorial optimization problems. We focus on the detailed study of classical problems which occur in many different contexts, together with the underlying theory. Most combinatorial optimization problems can be formulated naturally in terms of graphs and as (integer) linear programs. Therefore this book starts, after an introduction, by reviewing basic graph theory and proving those results in linear and integer programming which are most relevant for combinatorial optimization | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematics of Computing | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Vygen, Jens |d 1967- |e Sonstige |0 (DE-588)14204086X |4 oth | |
830 | 0 | |a Algorithms and Combinatorics |v 21 |w (DE-604)BV000617357 |9 21 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-21708-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858917 |
Datensatz im Suchindex
_version_ | 1804153099313479680 |
---|---|
any_adam_object | |
author | Korte, Bernhard 1938- |
author_GND | (DE-588)139321802 (DE-588)14204086X |
author_facet | Korte, Bernhard 1938- |
author_role | aut |
author_sort | Korte, Bernhard 1938- |
author_variant | b k bk |
building | Verbundindex |
bvnumber | BV042423500 |
classification_tum | MAT 000 MAT 913f |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864085652 (DE-599)BVBBV042423500 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-21708-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03336nmm a2200529zcb4500</leader><controlfield tag="001">BV042423500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190507 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662217085</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-21708-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662217108</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-21710-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-21708-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864085652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 913f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korte, Bernhard</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139321802</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial Optimization</subfield><subfield code="b">Theory and Algorithms</subfield><subfield code="c">by Bernhard Korte, Jens Vygen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 530 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algorithms and Combinatorics</subfield><subfield code="v">21</subfield><subfield code="x">0937-5511</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Combinatorial optimization is one of the youngest and most active areas of discrete mathematics, and is probably its driving force today. It became a subject in its own right about 50 years ago. This book describes the most important ideas, theoretical results, and algorithms in combinatorial optimization. We have conceived it as an advanced graduate text which can also be used as an up-to-date reference work for current research. The book includes the essential fundamentals of graph theory, linear and integer programming, and complexity theory. It covers classical topics in combinatorial optimization as well as very recent ones. The emphasis is on theoretical results and algorithms with provably good performance. Applications and heuristics are mentioned only occasionally. Combinatorial optimization has its roots in combinatorics, operations research, and theoretical computer science. A main motivation is that thousands of real-life problems can be formulated as abstract combinatorial optimization problems. We focus on the detailed study of classical problems which occur in many different contexts, together with the underlying theory. Most combinatorial optimization problems can be formulated naturally in terms of graphs and as (integer) linear programs. Therefore this book starts, after an introduction, by reviewing basic graph theory and proving those results in linear and integer programming which are most relevant for combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics of Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vygen, Jens</subfield><subfield code="d">1967-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)14204086X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algorithms and Combinatorics</subfield><subfield code="v">21</subfield><subfield code="w">(DE-604)BV000617357</subfield><subfield code="9">21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-21708-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858917</subfield></datafield></record></collection> |
id | DE-604.BV042423500 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662217085 9783662217108 |
issn | 0937-5511 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858917 |
oclc_num | 864085652 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 530 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Algorithms and Combinatorics |
series2 | Algorithms and Combinatorics |
spelling | Korte, Bernhard 1938- Verfasser (DE-588)139321802 aut Combinatorial Optimization Theory and Algorithms by Bernhard Korte, Jens Vygen Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XI, 530 p) txt rdacontent c rdamedia cr rdacarrier Algorithms and Combinatorics 21 0937-5511 Combinatorial optimization is one of the youngest and most active areas of discrete mathematics, and is probably its driving force today. It became a subject in its own right about 50 years ago. This book describes the most important ideas, theoretical results, and algorithms in combinatorial optimization. We have conceived it as an advanced graduate text which can also be used as an up-to-date reference work for current research. The book includes the essential fundamentals of graph theory, linear and integer programming, and complexity theory. It covers classical topics in combinatorial optimization as well as very recent ones. The emphasis is on theoretical results and algorithms with provably good performance. Applications and heuristics are mentioned only occasionally. Combinatorial optimization has its roots in combinatorics, operations research, and theoretical computer science. A main motivation is that thousands of real-life problems can be formulated as abstract combinatorial optimization problems. We focus on the detailed study of classical problems which occur in many different contexts, together with the underlying theory. Most combinatorial optimization problems can be formulated naturally in terms of graphs and as (integer) linear programs. Therefore this book starts, after an introduction, by reviewing basic graph theory and proving those results in linear and integer programming which are most relevant for combinatorial optimization Mathematics Computer science Combinatorics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematics of Computing Informatik Mathematik Kombinatorische Optimierung (DE-588)4031826-6 gnd rswk-swf Kombinatorische Optimierung (DE-588)4031826-6 s DE-604 Vygen, Jens 1967- Sonstige (DE-588)14204086X oth Algorithms and Combinatorics 21 (DE-604)BV000617357 21 https://doi.org/10.1007/978-3-662-21708-5 Verlag Volltext |
spellingShingle | Korte, Bernhard 1938- Combinatorial Optimization Theory and Algorithms Algorithms and Combinatorics Mathematics Computer science Combinatorics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematics of Computing Informatik Mathematik Kombinatorische Optimierung (DE-588)4031826-6 gnd |
subject_GND | (DE-588)4031826-6 |
title | Combinatorial Optimization Theory and Algorithms |
title_auth | Combinatorial Optimization Theory and Algorithms |
title_exact_search | Combinatorial Optimization Theory and Algorithms |
title_full | Combinatorial Optimization Theory and Algorithms by Bernhard Korte, Jens Vygen |
title_fullStr | Combinatorial Optimization Theory and Algorithms by Bernhard Korte, Jens Vygen |
title_full_unstemmed | Combinatorial Optimization Theory and Algorithms by Bernhard Korte, Jens Vygen |
title_short | Combinatorial Optimization |
title_sort | combinatorial optimization theory and algorithms |
title_sub | Theory and Algorithms |
topic | Mathematics Computer science Combinatorics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematics of Computing Informatik Mathematik Kombinatorische Optimierung (DE-588)4031826-6 gnd |
topic_facet | Mathematics Computer science Combinatorics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematics of Computing Informatik Mathematik Kombinatorische Optimierung |
url | https://doi.org/10.1007/978-3-662-21708-5 |
volume_link | (DE-604)BV000617357 |
work_keys_str_mv | AT kortebernhard combinatorialoptimizationtheoryandalgorithms AT vygenjens combinatorialoptimizationtheoryandalgorithms |