Some Nonlinear Problems in Riemannian Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1998
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. ......... |
Beschreibung: | 1 Online-Ressource (XVII, 398 p) |
ISBN: | 9783662130063 9783642082368 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-13006-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423490 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783662130063 |c Online |9 978-3-662-13006-3 | ||
020 | |a 9783642082368 |c Print |9 978-3-642-08236-8 | ||
024 | 7 | |a 10.1007/978-3-662-13006-3 |2 doi | |
035 | |a (OCoLC)863982561 | ||
035 | |a (DE-599)BVBBV042423490 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aubin, Thierry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Some Nonlinear Problems in Riemannian Geometry |c by Thierry Aubin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1998 | |
300 | |a 1 Online-Ressource (XVII, 398 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. ......... | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgeometrie |0 (DE-588)4309230-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 1 | 1 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Differentialgeometrie |0 (DE-588)4309230-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-13006-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858907 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099305091072 |
---|---|
any_adam_object | |
author | Aubin, Thierry |
author_facet | Aubin, Thierry |
author_role | aut |
author_sort | Aubin, Thierry |
author_variant | t a ta |
building | Verbundindex |
bvnumber | BV042423490 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863982561 (DE-599)BVBBV042423490 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-13006-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nmm a2200613zc 4500</leader><controlfield tag="001">BV042423490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662130063</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-13006-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642082368</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08236-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-13006-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863982561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423490</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Thierry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Nonlinear Problems in Riemannian Geometry</subfield><subfield code="c">by Thierry Aubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 398 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. .........</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgeometrie</subfield><subfield code="0">(DE-588)4309230-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Differentialgeometrie</subfield><subfield code="0">(DE-588)4309230-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-13006-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858907</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423490 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662130063 9783642082368 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858907 |
oclc_num | 863982561 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 398 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Aubin, Thierry Verfasser aut Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin Berlin, Heidelberg Springer Berlin Heidelberg 1998 1 Online-Ressource (XVII, 398 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. ......... Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Nichtlineare Theorie (DE-588)4251279-7 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Nichtlineare Analysis (DE-588)4177490-5 s 1\p DE-604 Nichtlineare Theorie (DE-588)4251279-7 s 2\p DE-604 Nichtlineare Differentialgeometrie (DE-588)4309230-5 s 3\p DE-604 https://doi.org/10.1007/978-3-662-13006-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aubin, Thierry Some Nonlinear Problems in Riemannian Geometry Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Nichtlineare Theorie (DE-588)4251279-7 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd |
subject_GND | (DE-588)4251279-7 (DE-588)4128462-8 (DE-588)4177490-5 (DE-588)4309230-5 |
title | Some Nonlinear Problems in Riemannian Geometry |
title_auth | Some Nonlinear Problems in Riemannian Geometry |
title_exact_search | Some Nonlinear Problems in Riemannian Geometry |
title_full | Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin |
title_fullStr | Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin |
title_full_unstemmed | Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin |
title_short | Some Nonlinear Problems in Riemannian Geometry |
title_sort | some nonlinear problems in riemannian geometry |
topic | Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Nichtlineare Theorie (DE-588)4251279-7 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd |
topic_facet | Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Nichtlineare Theorie Riemannsche Geometrie Nichtlineare Analysis Nichtlineare Differentialgeometrie |
url | https://doi.org/10.1007/978-3-662-13006-3 |
work_keys_str_mv | AT aubinthierry somenonlinearproblemsinriemanniangeometry |