Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1954
|
Ausgabe: | Second Edition |
Schriftenreihe: | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete
10 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and II, and this book not only gave the first systematic introduction to the kernelindex method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI calculus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applications have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full |
Beschreibung: | 1 Online-Ressource (XX, 514 p) |
ISBN: | 9783662129272 9783642056925 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-12927-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423489 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1954 |||| o||u| ||||||eng d | ||
020 | |a 9783662129272 |c Online |9 978-3-662-12927-2 | ||
020 | |a 9783642056925 |c Print |9 978-3-642-05692-5 | ||
024 | 7 | |a 10.1007/978-3-662-12927-2 |2 doi | |
035 | |a (OCoLC)1184503422 | ||
035 | |a (DE-599)BVBBV042423489 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Schouten, J. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ricci-Calculus |b An Introduction to Tensor Analysis and Its Geometrical Applications |c by J. A. Schouten |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1954 | |
300 | |a 1 Online-Ressource (XX, 514 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |v 10 |x 0072-7830 | |
500 | |a This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and II, and this book not only gave the first systematic introduction to the kernelindex method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI calculus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applications have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tensoranalysis |0 (DE-588)4204323-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ricci-Kalkül |0 (DE-588)4178086-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Tensoranalysis |0 (DE-588)4204323-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Ricci-Kalkül |0 (DE-588)4178086-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |v 10 |w (DE-604)BV049758308 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-12927-2 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079031823990784 |
---|---|
adam_text | |
any_adam_object | |
author | Schouten, J. A. |
author_facet | Schouten, J. A. |
author_role | aut |
author_sort | Schouten, J. A. |
author_variant | j a s ja jas |
building | Verbundindex |
bvnumber | BV042423489 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184503422 (DE-599)BVBBV042423489 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-12927-2 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042423489</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1954 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662129272</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-12927-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642056925</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05692-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-12927-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184503422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423489</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schouten, J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ricci-Calculus</subfield><subfield code="b">An Introduction to Tensor Analysis and Its Geometrical Applications</subfield><subfield code="c">by J. A. Schouten</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1954</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 514 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">10</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and II, and this book not only gave the first systematic introduction to the kernelindex method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI calculus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applications have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ricci-Kalkül</subfield><subfield code="0">(DE-588)4178086-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensoranalysis</subfield><subfield code="0">(DE-588)4204323-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ricci-Kalkül</subfield><subfield code="0">(DE-588)4178086-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-12927-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
id | DE-604.BV042423489 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:31Z |
institution | BVB |
isbn | 9783662129272 9783642056925 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858906 |
oclc_num | 1184503422 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 514 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1954 |
publishDateSearch | 1954 |
publishDateSort | 1954 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |
series2 | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Schouten, J. A. Verfasser aut Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications by J. A. Schouten Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1954 1 Online-Ressource (XX, 514 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete 10 0072-7830 This is an entirely new book. The first edition appeared in 1923 and at that time it was up to date. But in 193 5 and 1938 the author and Prof. D. J. STRUIK published a new book, their Einführung I and II, and this book not only gave the first systematic introduction to the kernelindex method but also contained many notions that had come into prominence since 1923. For instance densities, quantities of the second kind, pseudo-quantities, normal Coordinates, the symbolism of exterior forms, the LIE derivative, the theory of variation and deformation and the theory of subprojective connexions were included. Now since 1938 there have been many new developments and so a book on RICCI calculus and its applications has to cover quite different ground from the book of 1923. Though the purpose remains to make the reader acquainted with RICCI's famous instrument in its modern form, the book must have quite a different methodical structure and quite different applications have to be chosen. The first chapter contains algebraical preliminaries but the whole text is modernized and there is a section on hybrid quantities (quantities with indices of the first and of the second kind) and one on the many abridged notations that have been developed by several authors. In the second chapter the most important analytical notions that come before the introduction of a connexion aredealt with in full Mathematics Mathematics, general Mathematik Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Tensoranalysis (DE-588)4204323-2 gnd rswk-swf Ricci-Kalkül (DE-588)4178086-3 gnd rswk-swf Tensoranalysis (DE-588)4204323-2 s 1\p DE-604 Differentialgeometrie (DE-588)4012248-7 s 2\p DE-604 Ricci-Kalkül (DE-588)4178086-3 s 3\p DE-604 Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete 10 (DE-604)BV049758308 10 https://doi.org/10.1007/978-3-662-12927-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schouten, J. A. Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete Mathematics Mathematics, general Mathematik Differentialgeometrie (DE-588)4012248-7 gnd Tensoranalysis (DE-588)4204323-2 gnd Ricci-Kalkül (DE-588)4178086-3 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4204323-2 (DE-588)4178086-3 |
title | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications |
title_auth | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications |
title_exact_search | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications |
title_full | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications by J. A. Schouten |
title_fullStr | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications by J. A. Schouten |
title_full_unstemmed | Ricci-Calculus An Introduction to Tensor Analysis and Its Geometrical Applications by J. A. Schouten |
title_short | Ricci-Calculus |
title_sort | ricci calculus an introduction to tensor analysis and its geometrical applications |
title_sub | An Introduction to Tensor Analysis and Its Geometrical Applications |
topic | Mathematics Mathematics, general Mathematik Differentialgeometrie (DE-588)4012248-7 gnd Tensoranalysis (DE-588)4204323-2 gnd Ricci-Kalkül (DE-588)4178086-3 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Differentialgeometrie Tensoranalysis Ricci-Kalkül |
url | https://doi.org/10.1007/978-3-662-12927-2 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT schoutenja riccicalculusanintroductiontotensoranalysisanditsgeometricalapplications |