Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Ausgabe: | Second Edition |
Schriftenreihe: | Applications of Mathematics, Stochastic Modelling and Applied Probability
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial additions - in particular, exercises and their solutions - rendering this now classic reference suitable for use as a textbook |
Beschreibung: | 1 Online-Ressource (XIV, 334 p) |
ISBN: | 9783662116579 9783642085376 |
ISSN: | 0172-4568 |
DOI: | 10.1007/978-3-662-11657-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423457 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783662116579 |c Online |9 978-3-662-11657-9 | ||
020 | |a 9783642085376 |c Print |9 978-3-642-08537-6 | ||
024 | 7 | |a 10.1007/978-3-662-11657-9 |2 doi | |
035 | |a (OCoLC)1184731694 | ||
035 | |a (DE-599)BVBBV042423457 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Baccelli, François |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elements of Queueing Theory |b Palm Martingale Calculus and Stochastic Recurrences |c by François Baccelli, Pierre Brémaud |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XIV, 334 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applications of Mathematics, Stochastic Modelling and Applied Probability |v 26 |x 0172-4568 | |
500 | |a The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial additions - in particular, exercises and their solutions - rendering this now classic reference suitable for use as a textbook | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Telecommunication | |
650 | 4 | |a Economics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Communications Engineering, Networks | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Brémaud, Pierre |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-11657-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858874 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099218059264 |
---|---|
any_adam_object | |
author | Baccelli, François |
author_facet | Baccelli, François |
author_role | aut |
author_sort | Baccelli, François |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV042423457 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184731694 (DE-599)BVBBV042423457 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-11657-9 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03177nmm a2200565zcb4500</leader><controlfield tag="001">BV042423457</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662116579</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-11657-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642085376</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08537-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-11657-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184731694</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423457</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baccelli, François</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of Queueing Theory</subfield><subfield code="b">Palm Martingale Calculus and Stochastic Recurrences</subfield><subfield code="c">by François Baccelli, Pierre Brémaud</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 334 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applications of Mathematics, Stochastic Modelling and Applied Probability</subfield><subfield code="v">26</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial additions - in particular, exercises and their solutions - rendering this now classic reference suitable for use as a textbook</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communications Engineering, Networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brémaud, Pierre</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-11657-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858874</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423457 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662116579 9783642085376 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858874 |
oclc_num | 1184731694 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 334 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Applications of Mathematics, Stochastic Modelling and Applied Probability |
spelling | Baccelli, François Verfasser aut Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences by François Baccelli, Pierre Brémaud Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XIV, 334 p) txt rdacontent c rdamedia cr rdacarrier Applications of Mathematics, Stochastic Modelling and Applied Probability 26 0172-4568 The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationary queuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial additions - in particular, exercises and their solutions - rendering this now classic reference suitable for use as a textbook Mathematics Distribution (Probability theory) Mathematical statistics Telecommunication Economics Probability Theory and Stochastic Processes Statistical Theory and Methods Communications Engineering, Networks Economic Theory Mathematik Wirtschaft Warteschlangentheorie (DE-588)4255044-0 gnd rswk-swf Warteschlangentheorie (DE-588)4255044-0 s 1\p DE-604 Brémaud, Pierre Sonstige oth https://doi.org/10.1007/978-3-662-11657-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baccelli, François Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences Mathematics Distribution (Probability theory) Mathematical statistics Telecommunication Economics Probability Theory and Stochastic Processes Statistical Theory and Methods Communications Engineering, Networks Economic Theory Mathematik Wirtschaft Warteschlangentheorie (DE-588)4255044-0 gnd |
subject_GND | (DE-588)4255044-0 |
title | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences |
title_auth | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences |
title_exact_search | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences |
title_full | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences by François Baccelli, Pierre Brémaud |
title_fullStr | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences by François Baccelli, Pierre Brémaud |
title_full_unstemmed | Elements of Queueing Theory Palm Martingale Calculus and Stochastic Recurrences by François Baccelli, Pierre Brémaud |
title_short | Elements of Queueing Theory |
title_sort | elements of queueing theory palm martingale calculus and stochastic recurrences |
title_sub | Palm Martingale Calculus and Stochastic Recurrences |
topic | Mathematics Distribution (Probability theory) Mathematical statistics Telecommunication Economics Probability Theory and Stochastic Processes Statistical Theory and Methods Communications Engineering, Networks Economic Theory Mathematik Wirtschaft Warteschlangentheorie (DE-588)4255044-0 gnd |
topic_facet | Mathematics Distribution (Probability theory) Mathematical statistics Telecommunication Economics Probability Theory and Stochastic Processes Statistical Theory and Methods Communications Engineering, Networks Economic Theory Mathematik Wirtschaft Warteschlangentheorie |
url | https://doi.org/10.1007/978-3-662-11657-9 |
work_keys_str_mv | AT baccellifrancois elementsofqueueingtheorypalmmartingalecalculusandstochasticrecurrences AT bremaudpierre elementsofqueueingtheorypalmmartingalecalculusandstochasticrecurrences |