Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
326 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function e z. A central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. This book includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions with a discussion of Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is that proofs make systematic use of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) on linear algebraic groups |
Beschreibung: | 1 Online-Ressource (XXIII, 633 p) |
ISBN: | 9783662115695 9783642086083 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-11569-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423456 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662115695 |c Online |9 978-3-662-11569-5 | ||
020 | |a 9783642086083 |c Print |9 978-3-642-08608-3 | ||
024 | 7 | |a 10.1007/978-3-662-11569-5 |2 doi | |
035 | |a (OCoLC)879624384 | ||
035 | |a (DE-599)BVBBV042423456 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Waldschmidt, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Diophantine Approximation on Linear Algebraic Groups |b Transcendence Properties of the Exponential Function in Several Variables |c by Michel Waldschmidt |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XXIII, 633 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 326 |x 0072-7830 | |
500 | |a The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function e z. A central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. This book includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions with a discussion of Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is that proofs make systematic use of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) on linear algebraic groups | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diophantische Approximation |0 (DE-588)4135760-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |D s |
689 | 0 | 1 | |a Diophantische Approximation |0 (DE-588)4135760-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-11569-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858873 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099206524928 |
---|---|
any_adam_object | |
author | Waldschmidt, Michel |
author_facet | Waldschmidt, Michel |
author_role | aut |
author_sort | Waldschmidt, Michel |
author_variant | m w mw |
building | Verbundindex |
bvnumber | BV042423456 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624384 (DE-599)BVBBV042423456 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-11569-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03030nmm a2200529zcb4500</leader><controlfield tag="001">BV042423456</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662115695</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-11569-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642086083</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08608-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-11569-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423456</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waldschmidt, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diophantine Approximation on Linear Algebraic Groups</subfield><subfield code="b">Transcendence Properties of the Exponential Function in Several Variables</subfield><subfield code="c">by Michel Waldschmidt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 633 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">326</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function e z. A central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. This book includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions with a discussion of Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is that proofs make systematic use of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) on linear algebraic groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Approximation</subfield><subfield code="0">(DE-588)4135760-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Approximation</subfield><subfield code="0">(DE-588)4135760-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-11569-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858873</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423456 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662115695 9783642086083 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858873 |
oclc_num | 879624384 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 633 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Waldschmidt, Michel Verfasser aut Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables by Michel Waldschmidt Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XXIII, 633 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 326 0072-7830 The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function e z. A central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. This book includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions with a discussion of Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is that proofs make systematic use of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. 2 chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to P. Philippon) on linear algebraic groups Mathematics Geometry, algebraic Group theory Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Mathematik Diophantische Approximation (DE-588)4135760-7 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 s Diophantische Approximation (DE-588)4135760-7 s 1\p DE-604 https://doi.org/10.1007/978-3-662-11569-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Waldschmidt, Michel Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables Mathematics Geometry, algebraic Group theory Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Mathematik Diophantische Approximation (DE-588)4135760-7 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd |
subject_GND | (DE-588)4135760-7 (DE-588)4295326-1 |
title | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables |
title_auth | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables |
title_exact_search | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables |
title_full | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables by Michel Waldschmidt |
title_fullStr | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables by Michel Waldschmidt |
title_full_unstemmed | Diophantine Approximation on Linear Algebraic Groups Transcendence Properties of the Exponential Function in Several Variables by Michel Waldschmidt |
title_short | Diophantine Approximation on Linear Algebraic Groups |
title_sort | diophantine approximation on linear algebraic groups transcendence properties of the exponential function in several variables |
title_sub | Transcendence Properties of the Exponential Function in Several Variables |
topic | Mathematics Geometry, algebraic Group theory Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Mathematik Diophantische Approximation (DE-588)4135760-7 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd |
topic_facet | Mathematics Geometry, algebraic Group theory Number theory Number Theory Algebraic Geometry Group Theory and Generalizations Mathematik Diophantische Approximation Lineare algebraische Gruppe |
url | https://doi.org/10.1007/978-3-662-11569-5 |
work_keys_str_mv | AT waldschmidtmichel diophantineapproximationonlinearalgebraicgroupstranscendencepropertiesoftheexponentialfunctioninseveralvariables |