Differential Equations with Operator Coefficients: with Applications to Boundary Value Problems for Partial Differential Equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1999
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | * The aim of this book is to give a self-contained presentation of a theory of ordinary differential equations with unbounded operator coefficients in a Hilbert or Banach space. This theory has been developed over the last ten years by the authors. We study equations of the form t L{t, Dt)u{t) := L At-q{t)Dlu{t) = f{t) (0.1) q=O on the real axis lR or semiaxis t > to, where u and f are vector-valued functions and Dt = -i8t. We deal with the following topics • conditions of solvability • classes of uniqueness • estimates for solutions • asymptotic representations of solutions as t ---+ 00 Equations of the form (0.1) have numerous applications, especially to the theory of partial differential equations, and our exposition of abstract results is accompanied by many new applications to this theory. * The roots of the theme treated here are the qualitative and asymp totic theories of linear ordinary differential equations; these date back to Liouville, Sturm, Green, Stokes, Poincare, Lyapunov, to name only a few. In the twentieth century, fundamental contributions to the asymptotic analysis of ordinary differential equations were made by Birkhoff, Perron, Wentzel, Kramers, Brillouin and their numerous successors |
Beschreibung: | 1 Online-Ressource (XX, 444 p) |
ISBN: | 9783662115558 9783642084539 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-11555-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423454 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783662115558 |c Online |9 978-3-662-11555-8 | ||
020 | |a 9783642084539 |c Print |9 978-3-642-08453-9 | ||
024 | 7 | |a 10.1007/978-3-662-11555-8 |2 doi | |
035 | |a (OCoLC)1165526693 | ||
035 | |a (DE-599)BVBBV042423454 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kozlov, Vladimir |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential Equations with Operator Coefficients |b with Applications to Boundary Value Problems for Partial Differential Equations |c by Vladimir Kozlov, Vladimir Maz’ya |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1999 | |
300 | |a 1 Online-Ressource (XX, 444 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a * The aim of this book is to give a self-contained presentation of a theory of ordinary differential equations with unbounded operator coefficients in a Hilbert or Banach space. This theory has been developed over the last ten years by the authors. We study equations of the form t L{t, Dt)u{t) := L At-q{t)Dlu{t) = f{t) (0.1) q=O on the real axis lR or semiaxis t > to, where u and f are vector-valued functions and Dt = -i8t. We deal with the following topics • conditions of solvability • classes of uniqueness • estimates for solutions • asymptotic representations of solutions as t ---+ 00 Equations of the form (0.1) have numerous applications, especially to the theory of partial differential equations, and our exposition of abstract results is accompanied by many new applications to this theory. * The roots of the theme treated here are the qualitative and asymp totic theories of linear ordinary differential equations; these date back to Liouville, Sturm, Green, Stokes, Poincare, Lyapunov, to name only a few. In the twentieth century, fundamental contributions to the asymptotic analysis of ordinary differential equations were made by Birkhoff, Perron, Wentzel, Kramers, Brillouin and their numerous successors | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Operatorgleichung |0 (DE-588)4043601-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | 1 | |a Operatorgleichung |0 (DE-588)4043601-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 1 | 1 | |a Operatorgleichung |0 (DE-588)4043601-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Maz’ya, Vladimir |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-11555-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858871 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099211767808 |
---|---|
any_adam_object | |
author | Kozlov, Vladimir |
author_facet | Kozlov, Vladimir |
author_role | aut |
author_sort | Kozlov, Vladimir |
author_variant | v k vk |
building | Verbundindex |
bvnumber | BV042423454 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165526693 (DE-599)BVBBV042423454 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-11555-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03414nmm a2200553zc 4500</leader><controlfield tag="001">BV042423454</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662115558</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-11555-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642084539</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08453-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-11555-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165526693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kozlov, Vladimir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential Equations with Operator Coefficients</subfield><subfield code="b">with Applications to Boundary Value Problems for Partial Differential Equations</subfield><subfield code="c">by Vladimir Kozlov, Vladimir Maz’ya</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 444 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">* The aim of this book is to give a self-contained presentation of a theory of ordinary differential equations with unbounded operator coefficients in a Hilbert or Banach space. This theory has been developed over the last ten years by the authors. We study equations of the form t L{t, Dt)u{t) := L At-q{t)Dlu{t) = f{t) (0.1) q=O on the real axis lR or semiaxis t > to, where u and f are vector-valued functions and Dt = -i8t. We deal with the following topics • conditions of solvability • classes of uniqueness • estimates for solutions • asymptotic representations of solutions as t ---+ 00 Equations of the form (0.1) have numerous applications, especially to the theory of partial differential equations, and our exposition of abstract results is accompanied by many new applications to this theory. * The roots of the theme treated here are the qualitative and asymp totic theories of linear ordinary differential equations; these date back to Liouville, Sturm, Green, Stokes, Poincare, Lyapunov, to name only a few. In the twentieth century, fundamental contributions to the asymptotic analysis of ordinary differential equations were made by Birkhoff, Perron, Wentzel, Kramers, Brillouin and their numerous successors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Operatorgleichung</subfield><subfield code="0">(DE-588)4043601-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maz’ya, Vladimir</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-11555-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858871</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423454 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662115558 9783642084539 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858871 |
oclc_num | 1165526693 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 444 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Kozlov, Vladimir Verfasser aut Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations by Vladimir Kozlov, Vladimir Maz’ya Berlin, Heidelberg Springer Berlin Heidelberg 1999 1 Online-Ressource (XX, 444 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 * The aim of this book is to give a self-contained presentation of a theory of ordinary differential equations with unbounded operator coefficients in a Hilbert or Banach space. This theory has been developed over the last ten years by the authors. We study equations of the form t L{t, Dt)u{t) := L At-q{t)Dlu{t) = f{t) (0.1) q=O on the real axis lR or semiaxis t > to, where u and f are vector-valued functions and Dt = -i8t. We deal with the following topics • conditions of solvability • classes of uniqueness • estimates for solutions • asymptotic representations of solutions as t ---+ 00 Equations of the form (0.1) have numerous applications, especially to the theory of partial differential equations, and our exposition of abstract results is accompanied by many new applications to this theory. * The roots of the theme treated here are the qualitative and asymp totic theories of linear ordinary differential equations; these date back to Liouville, Sturm, Green, Stokes, Poincare, Lyapunov, to name only a few. In the twentieth century, fundamental contributions to the asymptotic analysis of ordinary differential equations were made by Birkhoff, Perron, Wentzel, Kramers, Brillouin and their numerous successors Mathematics Differential Equations Ordinary Differential Equations Mathematik Operatorgleichung (DE-588)4043601-9 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Differentialoperator (DE-588)4012251-7 s Operatorgleichung (DE-588)4043601-9 s 1\p DE-604 Gewöhnliche Differentialgleichung (DE-588)4020929-5 s 2\p DE-604 Maz’ya, Vladimir Sonstige oth https://doi.org/10.1007/978-3-662-11555-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kozlov, Vladimir Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations Mathematics Differential Equations Ordinary Differential Equations Mathematik Operatorgleichung (DE-588)4043601-9 gnd Differentialoperator (DE-588)4012251-7 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4043601-9 (DE-588)4012251-7 (DE-588)4020929-5 |
title | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations |
title_auth | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations |
title_exact_search | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations |
title_full | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations by Vladimir Kozlov, Vladimir Maz’ya |
title_fullStr | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations by Vladimir Kozlov, Vladimir Maz’ya |
title_full_unstemmed | Differential Equations with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations by Vladimir Kozlov, Vladimir Maz’ya |
title_short | Differential Equations with Operator Coefficients |
title_sort | differential equations with operator coefficients with applications to boundary value problems for partial differential equations |
title_sub | with Applications to Boundary Value Problems for Partial Differential Equations |
topic | Mathematics Differential Equations Ordinary Differential Equations Mathematik Operatorgleichung (DE-588)4043601-9 gnd Differentialoperator (DE-588)4012251-7 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Mathematics Differential Equations Ordinary Differential Equations Mathematik Operatorgleichung Differentialoperator Gewöhnliche Differentialgleichung |
url | https://doi.org/10.1007/978-3-662-11555-8 |
work_keys_str_mv | AT kozlovvladimir differentialequationswithoperatorcoefficientswithapplicationstoboundaryvalueproblemsforpartialdifferentialequations AT mazyavladimir differentialequationswithoperatorcoefficientswithapplicationstoboundaryvalueproblemsforpartialdifferentialequations |