Combinatorial Foundation of Homology and Homotopy: Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1999
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book considers deep and classical results of homotopy theory like the homological Whitehead theorem, the Hurewicz theorem, the finiteness obstruction theorem of Wall, the theorems on Whitehead torsion and simple homotopy equivalences, and characterizes axiomatically the assumptions under which such results hold. This leads to a new combinatorial foundation of homology and homotopy. Numerous explicit examples and applications in various fields of topology and algebra are given |
Beschreibung: | 1 Online-Ressource (XV, 365 p) |
ISBN: | 9783662113387 9783642084478 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-11338-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423452 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783662113387 |c Online |9 978-3-662-11338-7 | ||
020 | |a 9783642084478 |c Print |9 978-3-642-08447-8 | ||
024 | 7 | |a 10.1007/978-3-662-11338-7 |2 doi | |
035 | |a (OCoLC)1184481488 | ||
035 | |a (DE-599)BVBBV042423452 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Baues, Hans-Joachim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Combinatorial Foundation of Homology and Homotopy |b Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions |c by Hans-Joachim Baues |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1999 | |
300 | |a 1 Online-Ressource (XV, 365 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a This book considers deep and classical results of homotopy theory like the homological Whitehead theorem, the Hurewicz theorem, the finiteness obstruction theorem of Wall, the theorems on Whitehead torsion and simple homotopy equivalences, and characterizes axiomatically the assumptions under which such results hold. This leads to a new combinatorial foundation of homology and homotopy. Numerous explicit examples and applications in various fields of topology and algebra are given | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a K-theory | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-11338-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858869 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099202330624 |
---|---|
any_adam_object | |
author | Baues, Hans-Joachim |
author_facet | Baues, Hans-Joachim |
author_role | aut |
author_sort | Baues, Hans-Joachim |
author_variant | h j b hjb |
building | Verbundindex |
bvnumber | BV042423452 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184481488 (DE-599)BVBBV042423452 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-11338-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02730nmm a2200577zc 4500</leader><controlfield tag="001">BV042423452</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662113387</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-11338-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642084478</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08447-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-11338-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184481488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423452</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baues, Hans-Joachim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorial Foundation of Homology and Homotopy</subfield><subfield code="b">Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions</subfield><subfield code="c">by Hans-Joachim Baues</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 365 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book considers deep and classical results of homotopy theory like the homological Whitehead theorem, the Hurewicz theorem, the finiteness obstruction theorem of Wall, the theorems on Whitehead torsion and simple homotopy equivalences, and characterizes axiomatically the assumptions under which such results hold. This leads to a new combinatorial foundation of homology and homotopy. Numerous explicit examples and applications in various fields of topology and algebra are given</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-11338-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858869</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423452 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662113387 9783642084478 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858869 |
oclc_num | 1184481488 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 365 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Baues, Hans-Joachim Verfasser aut Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions by Hans-Joachim Baues Berlin, Heidelberg Springer Berlin Heidelberg 1999 1 Online-Ressource (XV, 365 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 This book considers deep and classical results of homotopy theory like the homological Whitehead theorem, the Hurewicz theorem, the finiteness obstruction theorem of Wall, the theorems on Whitehead torsion and simple homotopy equivalences, and characterizes axiomatically the assumptions under which such results hold. This leads to a new combinatorial foundation of homology and homotopy. Numerous explicit examples and applications in various fields of topology and algebra are given Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Homologietheorie (DE-588)4141714-8 s 1\p DE-604 Homotopietheorie (DE-588)4128142-1 s 2\p DE-604 Algebraische Topologie (DE-588)4120861-4 s 3\p DE-604 https://doi.org/10.1007/978-3-662-11338-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baues, Hans-Joachim Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Homotopietheorie (DE-588)4128142-1 gnd Homologietheorie (DE-588)4141714-8 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4128142-1 (DE-588)4141714-8 |
title | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions |
title_auth | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions |
title_exact_search | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions |
title_full | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions by Hans-Joachim Baues |
title_fullStr | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions by Hans-Joachim Baues |
title_full_unstemmed | Combinatorial Foundation of Homology and Homotopy Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions by Hans-Joachim Baues |
title_short | Combinatorial Foundation of Homology and Homotopy |
title_sort | combinatorial foundation of homology and homotopy applications to spaces diagrams transformation groups compactifications differential algebras algebraic theories simplicial objects and resolutions |
title_sub | Applications to Spaces, Diagrams, Transformation Groups, Compactifications, Differential Algebras, Algebraic Theories, Simplicial Objects, and Resolutions |
topic | Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Algebraische Topologie (DE-588)4120861-4 gnd Homotopietheorie (DE-588)4128142-1 gnd Homologietheorie (DE-588)4141714-8 gnd |
topic_facet | Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Algebraische Topologie Homotopietheorie Homologietheorie |
url | https://doi.org/10.1007/978-3-662-11338-7 |
work_keys_str_mv | AT baueshansjoachim combinatorialfoundationofhomologyandhomotopyapplicationstospacesdiagramstransformationgroupscompactificationsdifferentialalgebrasalgebraictheoriessimplicialobjectsandresolutions |