Analysis III: Spaces of Differentiable Functions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1991
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a subjective character, being in the first place dictated by the personal interests of the authors. Thus, the Part does not constitute a survey of all contemporary questions in the theory of imbedding of function spaces. Therefore also the bibliographical references given do not pretend to be exhaustive; we only list works mentioned in the text, and a more complete bibliography can be found in appropriate other monographs. O.V. Besov, v.1. Burenkov, P.1. Lizorkin and V.G. Maz'ya have graciously read the Part in manuscript form. All their critical remarks, for which the authors hereby express their sincere thanks, were taken account of in the final editing of the manuscript |
Beschreibung: | 1 Online-Ressource (VII, 221 p) |
ISBN: | 9783662099612 9783642080838 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-09961-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423431 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9783662099612 |c Online |9 978-3-662-09961-2 | ||
020 | |a 9783642080838 |c Print |9 978-3-642-08083-8 | ||
024 | 7 | |a 10.1007/978-3-662-09961-2 |2 doi | |
035 | |a (OCoLC)863913977 | ||
035 | |a (DE-599)BVBBV042423431 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nikol’skiĭ, S. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analysis III |b Spaces of Differentiable Functions |c edited by S. M. Nikol’skiĭ |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1991 | |
300 | |a 1 Online-Ressource (VII, 221 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 26 |x 0938-0396 | |
500 | |a In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a subjective character, being in the first place dictated by the personal interests of the authors. Thus, the Part does not constitute a survey of all contemporary questions in the theory of imbedding of function spaces. Therefore also the bibliographical references given do not pretend to be exhaustive; we only list works mentioned in the text, and a more complete bibliography can be found in appropriate other monographs. O.V. Besov, v.1. Burenkov, P.1. Lizorkin and V.G. Maz'ya have graciously read the Part in manuscript form. All their critical remarks, for which the authors hereby express their sincere thanks, were taken account of in the final editing of the manuscript | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09961-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858848 |
Datensatz im Suchindex
_version_ | 1804153099167727616 |
---|---|
any_adam_object | |
author | Nikol’skiĭ, S. M. |
author_facet | Nikol’skiĭ, S. M. |
author_role | aut |
author_sort | Nikol’skiĭ, S. M. |
author_variant | s m n sm smn |
building | Verbundindex |
bvnumber | BV042423431 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863913977 (DE-599)BVBBV042423431 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09961-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02610nmm a2200409zcb4500</leader><controlfield tag="001">BV042423431</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662099612</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09961-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642080838</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08083-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09961-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863913977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423431</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikol’skiĭ, S. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis III</subfield><subfield code="b">Spaces of Differentiable Functions</subfield><subfield code="c">edited by S. M. Nikol’skiĭ</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 221 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">26</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a subjective character, being in the first place dictated by the personal interests of the authors. Thus, the Part does not constitute a survey of all contemporary questions in the theory of imbedding of function spaces. Therefore also the bibliographical references given do not pretend to be exhaustive; we only list works mentioned in the text, and a more complete bibliography can be found in appropriate other monographs. O.V. Besov, v.1. Burenkov, P.1. Lizorkin and V.G. Maz'ya have graciously read the Part in manuscript form. All their critical remarks, for which the authors hereby express their sincere thanks, were taken account of in the final editing of the manuscript</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09961-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858848</subfield></datafield></record></collection> |
id | DE-604.BV042423431 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662099612 9783642080838 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858848 |
oclc_num | 863913977 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 221 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Nikol’skiĭ, S. M. Verfasser aut Analysis III Spaces of Differentiable Functions edited by S. M. Nikol’skiĭ Berlin, Heidelberg Springer Berlin Heidelberg 1991 1 Online-Ressource (VII, 221 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 26 0938-0396 In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a subjective character, being in the first place dictated by the personal interests of the authors. Thus, the Part does not constitute a survey of all contemporary questions in the theory of imbedding of function spaces. Therefore also the bibliographical references given do not pretend to be exhaustive; we only list works mentioned in the text, and a more complete bibliography can be found in appropriate other monographs. O.V. Besov, v.1. Burenkov, P.1. Lizorkin and V.G. Maz'ya have graciously read the Part in manuscript form. All their critical remarks, for which the authors hereby express their sincere thanks, were taken account of in the final editing of the manuscript Mathematics Global analysis (Mathematics) Analysis Mathematik https://doi.org/10.1007/978-3-662-09961-2 Verlag Volltext |
spellingShingle | Nikol’skiĭ, S. M. Analysis III Spaces of Differentiable Functions Mathematics Global analysis (Mathematics) Analysis Mathematik |
title | Analysis III Spaces of Differentiable Functions |
title_auth | Analysis III Spaces of Differentiable Functions |
title_exact_search | Analysis III Spaces of Differentiable Functions |
title_full | Analysis III Spaces of Differentiable Functions edited by S. M. Nikol’skiĭ |
title_fullStr | Analysis III Spaces of Differentiable Functions edited by S. M. Nikol’skiĭ |
title_full_unstemmed | Analysis III Spaces of Differentiable Functions edited by S. M. Nikol’skiĭ |
title_short | Analysis III |
title_sort | analysis iii spaces of differentiable functions |
title_sub | Spaces of Differentiable Functions |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik |
url | https://doi.org/10.1007/978-3-662-09961-2 |
work_keys_str_mv | AT nikolskiism analysisiiispacesofdifferentiablefunctions |