Sobolev Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1985
|
Schriftenreihe: | Springer Series in Soviet Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q |
Beschreibung: | 1 Online-Ressource (XIX, 488 p) |
ISBN: | 9783662099223 9783662099247 |
ISSN: | 0939-1169 |
DOI: | 10.1007/978-3-662-09922-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423428 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9783662099223 |c Online |9 978-3-662-09922-3 | ||
020 | |a 9783662099247 |c Print |9 978-3-662-09924-7 | ||
024 | 7 | |a 10.1007/978-3-662-09922-3 |2 doi | |
035 | |a (OCoLC)1185321491 | ||
035 | |a (DE-599)BVBBV042423428 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Maz’ja, Vladimir G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sobolev Spaces |c by Vladimir G. Maz’ja |
246 | 1 | 3 | |a Translated from the Russian by Saposnikova, T.O. |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1985 | |
300 | |a 1 Online-Ressource (XIX, 488 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Soviet Mathematics |x 0939-1169 | |
500 | |a The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09922-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858845 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099161436160 |
---|---|
any_adam_object | |
author | Maz’ja, Vladimir G. |
author_facet | Maz’ja, Vladimir G. |
author_role | aut |
author_sort | Maz’ja, Vladimir G. |
author_variant | v g m vg vgm |
building | Verbundindex |
bvnumber | BV042423428 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185321491 (DE-599)BVBBV042423428 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09922-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02328nmm a2200469zc 4500</leader><controlfield tag="001">BV042423428</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662099223</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09922-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662099247</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-09924-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09922-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185321491</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maz’ja, Vladimir G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev Spaces</subfield><subfield code="c">by Vladimir G. Maz’ja</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Translated from the Russian by Saposnikova, T.O.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 488 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Soviet Mathematics</subfield><subfield code="x">0939-1169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09922-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858845</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423428 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662099223 9783662099247 |
issn | 0939-1169 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858845 |
oclc_num | 1185321491 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIX, 488 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Soviet Mathematics |
spelling | Maz’ja, Vladimir G. Verfasser aut Sobolev Spaces by Vladimir G. Maz’ja Translated from the Russian by Saposnikova, T.O. Berlin, Heidelberg Springer Berlin Heidelberg 1985 1 Online-Ressource (XIX, 488 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Soviet Mathematics 0939-1169 The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 s 1\p DE-604 https://doi.org/10.1007/978-3-662-09922-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Maz’ja, Vladimir G. Sobolev Spaces Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Raum (DE-588)4055345-0 gnd |
subject_GND | (DE-588)4055345-0 |
title | Sobolev Spaces |
title_alt | Translated from the Russian by Saposnikova, T.O. |
title_auth | Sobolev Spaces |
title_exact_search | Sobolev Spaces |
title_full | Sobolev Spaces by Vladimir G. Maz’ja |
title_fullStr | Sobolev Spaces by Vladimir G. Maz’ja |
title_full_unstemmed | Sobolev Spaces by Vladimir G. Maz’ja |
title_short | Sobolev Spaces |
title_sort | sobolev spaces |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Raum (DE-588)4055345-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Sobolev-Raum |
url | https://doi.org/10.1007/978-3-662-09922-3 |
work_keys_str_mv | AT mazjavladimirg sobolevspaces AT mazjavladimirg translatedfromtherussianbysaposnikovato |