Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
74 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g dimensional complex torus to X. If 9 ~ 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ... , Zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates. th In the second half of the 19 century, classical algebraic geometry was born in Italy. The objects are sets of common zeros of polynomials. Such sets are of finite dimension, but may have singularities forming a closed subset of lower dimension; outside of the singular locus these zero sets are complex manifolds |
Beschreibung: | 1 Online-Ressource (VIII, 372 p) |
ISBN: | 9783662098738 9783642081507 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-09873-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423427 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783662098738 |c Online |9 978-3-662-09873-8 | ||
020 | |a 9783642081507 |c Print |9 978-3-642-08150-7 | ||
024 | 7 | |a 10.1007/978-3-662-09873-8 |2 doi | |
035 | |a (OCoLC)863941036 | ||
035 | |a (DE-599)BVBBV042423427 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Grauert, Hans |d 1930-2011 |e Verfasser |0 (DE-588)11921007X |4 aut | |
245 | 1 | 0 | |a Several Complex Variables VII |b Sheaf-Theoretical Methods in Complex Analysis |c edited by H. Grauert, Th. Peternell, R. Remmert |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VIII, 372 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 74 |x 0938-0396 | |
500 | |a Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g dimensional complex torus to X. If 9 ~ 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ... , Zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates. th In the second half of the 19 century, classical algebraic geometry was born in Italy. The objects are sets of common zeros of polynomials. Such sets are of finite dimension, but may have singularities forming a closed subset of lower dimension; outside of the singular locus these zero sets are complex manifolds | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Peternell, Thomas |d 1954- |e Sonstige |0 (DE-588)133675394 |4 oth | |
700 | 1 | |a Remmert, Reinhold |d 1930-2016 |e Sonstige |0 (DE-588)131654764 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09873-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858844 |
Datensatz im Suchindex
_version_ | 1804153099157241856 |
---|---|
any_adam_object | |
author | Grauert, Hans 1930-2011 |
author_GND | (DE-588)11921007X (DE-588)133675394 (DE-588)131654764 |
author_facet | Grauert, Hans 1930-2011 |
author_role | aut |
author_sort | Grauert, Hans 1930-2011 |
author_variant | h g hg |
building | Verbundindex |
bvnumber | BV042423427 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863941036 (DE-599)BVBBV042423427 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09873-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02777nmm a2200493zcb4500</leader><controlfield tag="001">BV042423427</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662098738</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09873-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081507</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08150-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09873-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863941036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423427</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grauert, Hans</subfield><subfield code="d">1930-2011</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11921007X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several Complex Variables VII</subfield><subfield code="b">Sheaf-Theoretical Methods in Complex Analysis</subfield><subfield code="c">edited by H. Grauert, Th. Peternell, R. Remmert</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 372 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">74</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g dimensional complex torus to X. If 9 ~ 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ... , Zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates. th In the second half of the 19 century, classical algebraic geometry was born in Italy. The objects are sets of common zeros of polynomials. Such sets are of finite dimension, but may have singularities forming a closed subset of lower dimension; outside of the singular locus these zero sets are complex manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peternell, Thomas</subfield><subfield code="d">1954-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133675394</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remmert, Reinhold</subfield><subfield code="d">1930-2016</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131654764</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09873-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858844</subfield></datafield></record></collection> |
id | DE-604.BV042423427 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662098738 9783642081507 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858844 |
oclc_num | 863941036 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 372 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Grauert, Hans 1930-2011 Verfasser (DE-588)11921007X aut Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis edited by H. Grauert, Th. Peternell, R. Remmert Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VIII, 372 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 74 0938-0396 Of making many books there is no end; and much study is a weariness of the flesh. Eccl. 12.12. 1. In the beginning Riemann created the surfaces. The periods of integrals of abelian differentials on a compact surface of genus 9 immediately attach a g dimensional complex torus to X. If 9 ~ 2, the moduli space of X depends on 3g - 3 complex parameters. Thus problems in one complex variable lead, from the very beginning, to studies in several complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates Z 1, ... , Zn; holomorphic functions are, locally, those functions which are holomorphic in these coordinates. th In the second half of the 19 century, classical algebraic geometry was born in Italy. The objects are sets of common zeros of polynomials. Such sets are of finite dimension, but may have singularities forming a closed subset of lower dimension; outside of the singular locus these zero sets are complex manifolds Mathematics Geometry, algebraic Global analysis (Mathematics) Global differential geometry Analysis Algebraic Geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Peternell, Thomas 1954- Sonstige (DE-588)133675394 oth Remmert, Reinhold 1930-2016 Sonstige (DE-588)131654764 oth https://doi.org/10.1007/978-3-662-09873-8 Verlag Volltext |
spellingShingle | Grauert, Hans 1930-2011 Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis Mathematics Geometry, algebraic Global analysis (Mathematics) Global differential geometry Analysis Algebraic Geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik |
title | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis |
title_auth | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis |
title_exact_search | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis |
title_full | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis edited by H. Grauert, Th. Peternell, R. Remmert |
title_fullStr | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis edited by H. Grauert, Th. Peternell, R. Remmert |
title_full_unstemmed | Several Complex Variables VII Sheaf-Theoretical Methods in Complex Analysis edited by H. Grauert, Th. Peternell, R. Remmert |
title_short | Several Complex Variables VII |
title_sort | several complex variables vii sheaf theoretical methods in complex analysis |
title_sub | Sheaf-Theoretical Methods in Complex Analysis |
topic | Mathematics Geometry, algebraic Global analysis (Mathematics) Global differential geometry Analysis Algebraic Geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Geometry, algebraic Global analysis (Mathematics) Global differential geometry Analysis Algebraic Geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-09873-8 |
work_keys_str_mv | AT grauerthans severalcomplexvariablesviisheaftheoreticalmethodsincomplexanalysis AT peternellthomas severalcomplexvariablesviisheaftheoreticalmethodsincomplexanalysis AT remmertreinhold severalcomplexvariablesviisheaftheoreticalmethodsincomplexanalysis |