Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
59 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This EMS volume contains two contributions: the first one, "Harmonic Analysis on Homogeneous Spaces", is written by V.F.Molchanov, the second one, "Representations of Lie Groups and Special Functions", by N.Ya.Vilenkin and A.U.Klimyk. Molchanov focuses on harmonic analysis on semi-simple spaces, whereas Vilenkin and Klimyk treat group theoretical methods also with respect to integral transforms. Both contributions are surveys introducing readers to the above topics and preparing them for the study of more specialised literature. This book will be very useful to mathematicians, theoretical physicists and also to chemists dealing with quantum systems |
Beschreibung: | 1 Online-Ressource (VIII, 270 p) |
ISBN: | 9783662097564 9783642081262 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-09756-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423424 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783662097564 |c Online |9 978-3-662-09756-4 | ||
020 | |a 9783642081262 |c Print |9 978-3-642-08126-2 | ||
024 | 7 | |a 10.1007/978-3-662-09756-4 |2 doi | |
035 | |a (OCoLC)863878980 | ||
035 | |a (DE-599)BVBBV042423424 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kirillov, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representation Theory and Noncommutative Harmonic Analysis II |b Homogeneous Spaces, Representations and Special Functions |c edited by A. A. Kirillov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (VIII, 270 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 59 |x 0938-0396 | |
500 | |a This EMS volume contains two contributions: the first one, "Harmonic Analysis on Homogeneous Spaces", is written by V.F.Molchanov, the second one, "Representations of Lie Groups and Special Functions", by N.Ya.Vilenkin and A.U.Klimyk. Molchanov focuses on harmonic analysis on semi-simple spaces, whereas Vilenkin and Klimyk treat group theoretical methods also with respect to integral transforms. Both contributions are surveys introducing readers to the above topics and preparing them for the study of more specialised literature. This book will be very useful to mathematicians, theoretical physicists and also to chemists dealing with quantum systems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Chemistry | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Theoretical and Computational Chemistry | |
650 | 4 | |a Chemie | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09756-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858841 |
Datensatz im Suchindex
_version_ | 1804153099151998976 |
---|---|
any_adam_object | |
author | Kirillov, A. A. |
author_facet | Kirillov, A. A. |
author_role | aut |
author_sort | Kirillov, A. A. |
author_variant | a a k aa aak |
building | Verbundindex |
bvnumber | BV042423424 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863878980 (DE-599)BVBBV042423424 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09756-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02508nmm a2200553zcb4500</leader><controlfield tag="001">BV042423424</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662097564</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09756-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081262</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08126-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09756-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863878980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirillov, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation Theory and Noncommutative Harmonic Analysis II</subfield><subfield code="b">Homogeneous Spaces, Representations and Special Functions</subfield><subfield code="c">edited by A. A. Kirillov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 270 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">59</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This EMS volume contains two contributions: the first one, "Harmonic Analysis on Homogeneous Spaces", is written by V.F.Molchanov, the second one, "Representations of Lie Groups and Special Functions", by N.Ya.Vilenkin and A.U.Klimyk. Molchanov focuses on harmonic analysis on semi-simple spaces, whereas Vilenkin and Klimyk treat group theoretical methods also with respect to integral transforms. Both contributions are surveys introducing readers to the above topics and preparing them for the study of more specialised literature. This book will be very useful to mathematicians, theoretical physicists and also to chemists dealing with quantum systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Computational Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09756-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858841</subfield></datafield></record></collection> |
id | DE-604.BV042423424 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662097564 9783642081262 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858841 |
oclc_num | 863878980 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 270 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Kirillov, A. A. Verfasser aut Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions edited by A. A. Kirillov Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (VIII, 270 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 59 0938-0396 This EMS volume contains two contributions: the first one, "Harmonic Analysis on Homogeneous Spaces", is written by V.F.Molchanov, the second one, "Representations of Lie Groups and Special Functions", by N.Ya.Vilenkin and A.U.Klimyk. Molchanov focuses on harmonic analysis on semi-simple spaces, whereas Vilenkin and Klimyk treat group theoretical methods also with respect to integral transforms. Both contributions are surveys introducing readers to the above topics and preparing them for the study of more specialised literature. This book will be very useful to mathematicians, theoretical physicists and also to chemists dealing with quantum systems Mathematics Chemistry Topological Groups Global analysis (Mathematics) Global differential geometry Quantum theory Topological Groups, Lie Groups Differential Geometry Analysis Quantum Information Technology, Spintronics Quantum Physics Theoretical and Computational Chemistry Chemie Mathematik Quantentheorie https://doi.org/10.1007/978-3-662-09756-4 Verlag Volltext |
spellingShingle | Kirillov, A. A. Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions Mathematics Chemistry Topological Groups Global analysis (Mathematics) Global differential geometry Quantum theory Topological Groups, Lie Groups Differential Geometry Analysis Quantum Information Technology, Spintronics Quantum Physics Theoretical and Computational Chemistry Chemie Mathematik Quantentheorie |
title | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions |
title_auth | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions |
title_exact_search | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions |
title_full | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions edited by A. A. Kirillov |
title_fullStr | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions edited by A. A. Kirillov |
title_full_unstemmed | Representation Theory and Noncommutative Harmonic Analysis II Homogeneous Spaces, Representations and Special Functions edited by A. A. Kirillov |
title_short | Representation Theory and Noncommutative Harmonic Analysis II |
title_sort | representation theory and noncommutative harmonic analysis ii homogeneous spaces representations and special functions |
title_sub | Homogeneous Spaces, Representations and Special Functions |
topic | Mathematics Chemistry Topological Groups Global analysis (Mathematics) Global differential geometry Quantum theory Topological Groups, Lie Groups Differential Geometry Analysis Quantum Information Technology, Spintronics Quantum Physics Theoretical and Computational Chemistry Chemie Mathematik Quantentheorie |
topic_facet | Mathematics Chemistry Topological Groups Global analysis (Mathematics) Global differential geometry Quantum theory Topological Groups, Lie Groups Differential Geometry Analysis Quantum Information Technology, Spintronics Quantum Physics Theoretical and Computational Chemistry Chemie Mathematik Quantentheorie |
url | https://doi.org/10.1007/978-3-662-09756-4 |
work_keys_str_mv | AT kirillovaa representationtheoryandnoncommutativeharmonicanalysisiihomogeneousspacesrepresentationsandspecialfunctions |