Geometric Inequalities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
285 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Geometric inequalities have a wide range of applications- within geometry itself as well as beyond its limits. The theory of functions of a complex variable, the calculus of variations in the large, embedding theorems of function spaces, a priori estimates for solutions of differential equations yield many such examples. We have attempted to pick out the most general inequalities and, in model cases, we exhibit effective geometrie constructions and the means of proving such inequalities. A substantial part of this book deals with isoperimetric inequalities and their generalizations, but, for all their variety, they do not exhaust the contents of the book. The objects under consideration, as a rule, are quite general. They are curves, surfaces and other manifolds, embedded in an underlying space or supplied with an intrinsic metric. Geometric inequalities, used for different purposes, appear in different contexts- surrounded by a variety of technical machinery, with diverse requirements for the objects under study. Therefore the methods of proof will differ not only from chapter to chapter, but even within individual sections. An inspection of monographs on algebraic and functional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type |
Beschreibung: | 1 Online-Ressource (XIV, 334 p) |
ISBN: | 9783662074411 9783642057243 |
DOI: | 10.1007/978-3-662-07441-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423395 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783662074411 |c Online |9 978-3-662-07441-1 | ||
020 | |a 9783642057243 |c Print |9 978-3-642-05724-3 | ||
024 | 7 | |a 10.1007/978-3-662-07441-1 |2 doi | |
035 | |a (OCoLC)1165554055 | ||
035 | |a (DE-599)BVBBV042423395 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Burago, Yuriĭ Dmitrievich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Inequalities |c by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (XIV, 334 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 285 | |
500 | |a Geometric inequalities have a wide range of applications- within geometry itself as well as beyond its limits. The theory of functions of a complex variable, the calculus of variations in the large, embedding theorems of function spaces, a priori estimates for solutions of differential equations yield many such examples. We have attempted to pick out the most general inequalities and, in model cases, we exhibit effective geometrie constructions and the means of proving such inequalities. A substantial part of this book deals with isoperimetric inequalities and their generalizations, but, for all their variety, they do not exhaust the contents of the book. The objects under consideration, as a rule, are quite general. They are curves, surfaces and other manifolds, embedded in an underlying space or supplied with an intrinsic metric. Geometric inequalities, used for different purposes, appear in different contexts- surrounded by a variety of technical machinery, with diverse requirements for the objects under study. Therefore the methods of proof will differ not only from chapter to chapter, but even within individual sections. An inspection of monographs on algebraic and functional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Ungleichung |0 (DE-588)4705164-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ungleichung |0 (DE-588)4139098-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ungleichung |0 (DE-588)4139098-2 |D s |
689 | 0 | 1 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Ungleichung |0 (DE-588)4705164-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Zalgaller, Viktor Abramovich |e Sonstige |4 oth | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 285 |w (DE-604)BV049758308 |9 285 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-07441-1 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079047325089792 |
---|---|
adam_text | |
any_adam_object | |
author | Burago, Yuriĭ Dmitrievich |
author_facet | Burago, Yuriĭ Dmitrievich |
author_role | aut |
author_sort | Burago, Yuriĭ Dmitrievich |
author_variant | y d b yd ydb |
building | Verbundindex |
bvnumber | BV042423395 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165554055 (DE-599)BVBBV042423395 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-07441-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042423395</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662074411</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-07441-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642057243</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05724-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-07441-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165554055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423395</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burago, Yuriĭ Dmitrievich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Inequalities</subfield><subfield code="c">by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 334 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Geometric inequalities have a wide range of applications- within geometry itself as well as beyond its limits. The theory of functions of a complex variable, the calculus of variations in the large, embedding theorems of function spaces, a priori estimates for solutions of differential equations yield many such examples. We have attempted to pick out the most general inequalities and, in model cases, we exhibit effective geometrie constructions and the means of proving such inequalities. A substantial part of this book deals with isoperimetric inequalities and their generalizations, but, for all their variety, they do not exhaust the contents of the book. The objects under consideration, as a rule, are quite general. They are curves, surfaces and other manifolds, embedded in an underlying space or supplied with an intrinsic metric. Geometric inequalities, used for different purposes, appear in different contexts- surrounded by a variety of technical machinery, with diverse requirements for the objects under study. Therefore the methods of proof will differ not only from chapter to chapter, but even within individual sections. An inspection of monographs on algebraic and functional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Ungleichung</subfield><subfield code="0">(DE-588)4705164-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ungleichung</subfield><subfield code="0">(DE-588)4139098-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Ungleichung</subfield><subfield code="0">(DE-588)4705164-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zalgaller, Viktor Abramovich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">285</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">285</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-07441-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
id | DE-604.BV042423395 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:46Z |
institution | BVB |
isbn | 9783662074411 9783642057243 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858812 |
oclc_num | 1165554055 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 334 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Burago, Yuriĭ Dmitrievich Verfasser aut Geometric Inequalities by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (XIV, 334 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 285 Geometric inequalities have a wide range of applications- within geometry itself as well as beyond its limits. The theory of functions of a complex variable, the calculus of variations in the large, embedding theorems of function spaces, a priori estimates for solutions of differential equations yield many such examples. We have attempted to pick out the most general inequalities and, in model cases, we exhibit effective geometrie constructions and the means of proving such inequalities. A substantial part of this book deals with isoperimetric inequalities and their generalizations, but, for all their variety, they do not exhaust the contents of the book. The objects under consideration, as a rule, are quite general. They are curves, surfaces and other manifolds, embedded in an underlying space or supplied with an intrinsic metric. Geometric inequalities, used for different purposes, appear in different contexts- surrounded by a variety of technical machinery, with diverse requirements for the objects under study. Therefore the methods of proof will differ not only from chapter to chapter, but even within individual sections. An inspection of monographs on algebraic and functional inequalities ([HLP], [BeB], [MV], [MM]) shows that this is typical for books of this type Mathematics Discrete groups Global differential geometry Differential Geometry Convex and Discrete Geometry Mathematik Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Geometrische Ungleichung (DE-588)4705164-4 gnd rswk-swf Ungleichung (DE-588)4139098-2 gnd rswk-swf Ungleichung (DE-588)4139098-2 s Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Geometrische Ungleichung (DE-588)4705164-4 s 2\p DE-604 Zalgaller, Viktor Abramovich Sonstige oth Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 285 (DE-604)BV049758308 285 https://doi.org/10.1007/978-3-662-07441-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burago, Yuriĭ Dmitrievich Geometric Inequalities Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics Mathematics Discrete groups Global differential geometry Differential Geometry Convex and Discrete Geometry Mathematik Differentialgeometrie (DE-588)4012248-7 gnd Geometrische Ungleichung (DE-588)4705164-4 gnd Ungleichung (DE-588)4139098-2 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4705164-4 (DE-588)4139098-2 |
title | Geometric Inequalities |
title_auth | Geometric Inequalities |
title_exact_search | Geometric Inequalities |
title_full | Geometric Inequalities by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller |
title_fullStr | Geometric Inequalities by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller |
title_full_unstemmed | Geometric Inequalities by Yuriĭ Dmitrievich Burago, Viktor Abramovich Zalgaller |
title_short | Geometric Inequalities |
title_sort | geometric inequalities |
topic | Mathematics Discrete groups Global differential geometry Differential Geometry Convex and Discrete Geometry Mathematik Differentialgeometrie (DE-588)4012248-7 gnd Geometrische Ungleichung (DE-588)4705164-4 gnd Ungleichung (DE-588)4139098-2 gnd |
topic_facet | Mathematics Discrete groups Global differential geometry Differential Geometry Convex and Discrete Geometry Mathematik Differentialgeometrie Geometrische Ungleichung Ungleichung |
url | https://doi.org/10.1007/978-3-662-07441-1 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT buragoyuriidmitrievich geometricinequalities AT zalgallerviktorabramovich geometricinequalities |