Elementary and Analytic Theory of Algebraic Numbers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Ausgabe: | Third Edition |
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this book is to present an exposition of the theory of algebraic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numerical computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two approaches, presenting a self-contained exposition of the classical standpoint in the first four chapters, and then turning to local methods. In the first chapter we present the necessary tools from the theory of Dedekind domains and valuation theory, including the structure of finitely generated modules over Dedekind domains. In Chapters 2, 3 and 4 the classical theory of algebraic numbers is developed. Chapter 5 contains the fundamental notions of the theory of p-adic fields, and Chapter 6 brings their applications to the study of algebraic number fields. We include here Shafarevich's proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles |
Beschreibung: | 1 Online-Ressource (XI, 712 p) |
ISBN: | 9783662070017 9783642060106 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-07001-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423388 | ||
003 | DE-604 | ||
005 | 20180126 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783662070017 |c Online |9 978-3-662-07001-7 | ||
020 | |a 9783642060106 |c Print |9 978-3-642-06010-6 | ||
024 | 7 | |a 10.1007/978-3-662-07001-7 |2 doi | |
035 | |a (OCoLC)1165457036 | ||
035 | |a (DE-599)BVBBV042423388 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Narkiewicz, Władysław |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elementary and Analytic Theory of Algebraic Numbers |c by Władysław Narkiewicz |
250 | |a Third Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XI, 712 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a The aim of this book is to present an exposition of the theory of algebraic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numerical computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two approaches, presenting a self-contained exposition of the classical standpoint in the first four chapters, and then turning to local methods. In the first chapter we present the necessary tools from the theory of Dedekind domains and valuation theory, including the structure of finitely generated modules over Dedekind domains. In Chapters 2, 3 and 4 the classical theory of algebraic numbers is developed. Chapter 5 contains the fundamental notions of the theory of p-adic fields, and Chapter 6 brings their applications to the study of algebraic number fields. We include here Shafarevich's proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Zahl |0 (DE-588)4141847-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Zahlentheorie |0 (DE-588)4001170-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Zahl |0 (DE-588)4141847-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Analytische Zahlentheorie |0 (DE-588)4001870-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-07001-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858805 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099086987264 |
---|---|
any_adam_object | |
author | Narkiewicz, Władysław |
author_facet | Narkiewicz, Władysław |
author_role | aut |
author_sort | Narkiewicz, Władysław |
author_variant | w n wn |
building | Verbundindex |
bvnumber | BV042423388 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165457036 (DE-599)BVBBV042423388 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-07001-7 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03611nmm a2200601zc 4500</leader><controlfield tag="001">BV042423388</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662070017</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-07001-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642060106</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-06010-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-07001-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165457036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423388</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narkiewicz, Władysław</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary and Analytic Theory of Algebraic Numbers</subfield><subfield code="c">by Władysław Narkiewicz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 712 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to present an exposition of the theory of algebraic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numerical computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two approaches, presenting a self-contained exposition of the classical standpoint in the first four chapters, and then turning to local methods. In the first chapter we present the necessary tools from the theory of Dedekind domains and valuation theory, including the structure of finitely generated modules over Dedekind domains. In Chapters 2, 3 and 4 the classical theory of algebraic numbers is developed. Chapter 5 contains the fundamental notions of the theory of p-adic fields, and Chapter 6 brings their applications to the study of algebraic number fields. We include here Shafarevich's proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahl</subfield><subfield code="0">(DE-588)4141847-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Zahl</subfield><subfield code="0">(DE-588)4141847-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-07001-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858805</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423388 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662070017 9783642060106 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858805 |
oclc_num | 1165457036 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 712 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Narkiewicz, Władysław Verfasser aut Elementary and Analytic Theory of Algebraic Numbers by Władysław Narkiewicz Third Edition Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XI, 712 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 The aim of this book is to present an exposition of the theory of algebraic numbers, excluding class-field theory and its consequences. There are many ways to develop this subject; the latest trend is to neglect the classical Dedekind theory of ideals in favour of local methods. However, for numerical computations, necessary for applications of algebraic numbers to other areas of number theory, the old approach seems more suitable, although its exposition is obviously longer. On the other hand the local approach is more powerful for analytical purposes, as demonstrated in Tate's thesis. Thus the author has tried to reconcile the two approaches, presenting a self-contained exposition of the classical standpoint in the first four chapters, and then turning to local methods. In the first chapter we present the necessary tools from the theory of Dedekind domains and valuation theory, including the structure of finitely generated modules over Dedekind domains. In Chapters 2, 3 and 4 the classical theory of algebraic numbers is developed. Chapter 5 contains the fundamental notions of the theory of p-adic fields, and Chapter 6 brings their applications to the study of algebraic number fields. We include here Shafarevich's proof of the Kronecker-Weber theorem, and also the main properties of adeles and ideles Mathematics Algebra Mathematik Analytische Zahlentheorie (DE-588)4001870-2 gnd rswk-swf Algebraische Zahl (DE-588)4141847-5 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Algebraische Zahlentheorie (DE-588)4001170-7 s 1\p DE-604 Algebraische Zahl (DE-588)4141847-5 s 2\p DE-604 Analytische Zahlentheorie (DE-588)4001870-2 s 3\p DE-604 Zahlentheorie (DE-588)4067277-3 s 4\p DE-604 https://doi.org/10.1007/978-3-662-07001-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Narkiewicz, Władysław Elementary and Analytic Theory of Algebraic Numbers Mathematics Algebra Mathematik Analytische Zahlentheorie (DE-588)4001870-2 gnd Algebraische Zahl (DE-588)4141847-5 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4001870-2 (DE-588)4141847-5 (DE-588)4001170-7 (DE-588)4067277-3 |
title | Elementary and Analytic Theory of Algebraic Numbers |
title_auth | Elementary and Analytic Theory of Algebraic Numbers |
title_exact_search | Elementary and Analytic Theory of Algebraic Numbers |
title_full | Elementary and Analytic Theory of Algebraic Numbers by Władysław Narkiewicz |
title_fullStr | Elementary and Analytic Theory of Algebraic Numbers by Władysław Narkiewicz |
title_full_unstemmed | Elementary and Analytic Theory of Algebraic Numbers by Władysław Narkiewicz |
title_short | Elementary and Analytic Theory of Algebraic Numbers |
title_sort | elementary and analytic theory of algebraic numbers |
topic | Mathematics Algebra Mathematik Analytische Zahlentheorie (DE-588)4001870-2 gnd Algebraische Zahl (DE-588)4141847-5 gnd Algebraische Zahlentheorie (DE-588)4001170-7 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Mathematics Algebra Mathematik Analytische Zahlentheorie Algebraische Zahl Algebraische Zahlentheorie Zahlentheorie |
url | https://doi.org/10.1007/978-3-662-07001-7 |
work_keys_str_mv | AT narkiewiczwładysław elementaryandanalytictheoryofalgebraicnumbers |