Dynamical Systems VIII: Singularity Theory II. Applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
39 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the first volume of this survey (Arnol'd et al. (1988), hereafter cited as "EMS 6") we acquainted the reader with the basic concepts and methods of the theory of singularities of smooth mappings and functions. This theory has numerous applications in mathematics and physics; here we begin describing these applications. Nevertheless the present volume is essentially independent of the first one: all of the concepts of singularity theory that we use are introduced in the course of the presentation, and references to EMS 6 are confined to the citation of technical results. Although our main goal is the presentation of an already formulated theory, the reader will also come upon some comparatively recent results, apparently unknown even to specialists. We point out some of these results. 2 3 In the consideration of mappings from C into C in § 3. 6 of Chapter 1, we define the bifurcation diagram of such a mapping, formulate a K(n, 1)-theorem for the complements to the bifurcation diagrams of simple singularities, give the definition of the Mond invariant N in the spirit of "hunting for invariants", and we draw the reader's attention to a method of constructing the image of a mapping from the corresponding function on a manifold with boundary. In § 4. 6 of the same chapter we introduce the concept of a versal deformation of a function with a nonisolated singularity in the dass of functions whose critical sets are arbitrary complete intersections of fixed dimension |
Beschreibung: | 1 Online-Ressource (VI, 238 p) |
ISBN: | 9783662067987 9783642081019 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-06798-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423386 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783662067987 |c Online |9 978-3-662-06798-7 | ||
020 | |a 9783642081019 |c Print |9 978-3-642-08101-9 | ||
024 | 7 | |a 10.1007/978-3-662-06798-7 |2 doi | |
035 | |a (OCoLC)863895236 | ||
035 | |a (DE-599)BVBBV042423386 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Arnol'd, V. I. |4 edt | |
245 | 1 | 0 | |a Dynamical Systems VIII |b Singularity Theory II. Applications |c edited by V. I. Arnol'd |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (VI, 238 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of Mathematical Sciences |v 39 |x 0938-0396 | |
500 | |a In the first volume of this survey (Arnol'd et al. (1988), hereafter cited as "EMS 6") we acquainted the reader with the basic concepts and methods of the theory of singularities of smooth mappings and functions. This theory has numerous applications in mathematics and physics; here we begin describing these applications. Nevertheless the present volume is essentially independent of the first one: all of the concepts of singularity theory that we use are introduced in the course of the presentation, and references to EMS 6 are confined to the citation of technical results. Although our main goal is the presentation of an already formulated theory, the reader will also come upon some comparatively recent results, apparently unknown even to specialists. We point out some of these results. 2 3 In the consideration of mappings from C into C in § 3. 6 of Chapter 1, we define the bifurcation diagram of such a mapping, formulate a K(n, 1)-theorem for the complements to the bifurcation diagrams of simple singularities, give the definition of the Mond invariant N in the spirit of "hunting for invariants", and we draw the reader's attention to a method of constructing the image of a mapping from the corresponding function on a manifold with boundary. In § 4. 6 of the same chapter we introduce the concept of a versal deformation of a function with a nonisolated singularity in the dass of functions whose critical sets are arbitrary complete intersections of fixed dimension | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
830 | 0 | |a Encyclopaedia of Mathematical Sciences |v 39 |w (DE-604)BV024126459 |9 39 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06798-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858803 |
Datensatz im Suchindex
_version_ | 1804153099080695808 |
---|---|
any_adam_object | |
author2 | Arnol'd, V. I. |
author2_role | edt |
author2_variant | v i a vi via |
author_facet | Arnol'd, V. I. |
building | Verbundindex |
bvnumber | BV042423386 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863895236 (DE-599)BVBBV042423386 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06798-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03217nmm a2200505zcb4500</leader><controlfield tag="001">BV042423386</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067987</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06798-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081019</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08101-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06798-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863895236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423386</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnol'd, V. I.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical Systems VIII</subfield><subfield code="b">Singularity Theory II. Applications</subfield><subfield code="c">edited by V. I. Arnol'd</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 238 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">39</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the first volume of this survey (Arnol'd et al. (1988), hereafter cited as "EMS 6") we acquainted the reader with the basic concepts and methods of the theory of singularities of smooth mappings and functions. This theory has numerous applications in mathematics and physics; here we begin describing these applications. Nevertheless the present volume is essentially independent of the first one: all of the concepts of singularity theory that we use are introduced in the course of the presentation, and references to EMS 6 are confined to the citation of technical results. Although our main goal is the presentation of an already formulated theory, the reader will also come upon some comparatively recent results, apparently unknown even to specialists. We point out some of these results. 2 3 In the consideration of mappings from C into C in § 3. 6 of Chapter 1, we define the bifurcation diagram of such a mapping, formulate a K(n, 1)-theorem for the complements to the bifurcation diagrams of simple singularities, give the definition of the Mond invariant N in the spirit of "hunting for invariants", and we draw the reader's attention to a method of constructing the image of a mapping from the corresponding function on a manifold with boundary. In § 4. 6 of the same chapter we introduce the concept of a versal deformation of a function with a nonisolated singularity in the dass of functions whose critical sets are arbitrary complete intersections of fixed dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">39</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">39</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06798-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858803</subfield></datafield></record></collection> |
id | DE-604.BV042423386 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662067987 9783642081019 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858803 |
oclc_num | 863895236 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 238 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Encyclopaedia of Mathematical Sciences |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Arnol'd, V. I. edt Dynamical Systems VIII Singularity Theory II. Applications edited by V. I. Arnol'd Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (VI, 238 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 39 0938-0396 In the first volume of this survey (Arnol'd et al. (1988), hereafter cited as "EMS 6") we acquainted the reader with the basic concepts and methods of the theory of singularities of smooth mappings and functions. This theory has numerous applications in mathematics and physics; here we begin describing these applications. Nevertheless the present volume is essentially independent of the first one: all of the concepts of singularity theory that we use are introduced in the course of the presentation, and references to EMS 6 are confined to the citation of technical results. Although our main goal is the presentation of an already formulated theory, the reader will also come upon some comparatively recent results, apparently unknown even to specialists. We point out some of these results. 2 3 In the consideration of mappings from C into C in § 3. 6 of Chapter 1, we define the bifurcation diagram of such a mapping, formulate a K(n, 1)-theorem for the complements to the bifurcation diagrams of simple singularities, give the definition of the Mond invariant N in the spirit of "hunting for invariants", and we draw the reader's attention to a method of constructing the image of a mapping from the corresponding function on a manifold with boundary. In § 4. 6 of the same chapter we introduce the concept of a versal deformation of a function with a nonisolated singularity in the dass of functions whose critical sets are arbitrary complete intersections of fixed dimension Mathematics Geometry, algebraic Global analysis (Mathematics) Algebraic topology Cell aggregation / Mathematics Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Theoretical, Mathematical and Computational Physics Algebraic Geometry Mathematik Encyclopaedia of Mathematical Sciences 39 (DE-604)BV024126459 39 https://doi.org/10.1007/978-3-662-06798-7 Verlag Volltext |
spellingShingle | Dynamical Systems VIII Singularity Theory II. Applications Encyclopaedia of Mathematical Sciences Mathematics Geometry, algebraic Global analysis (Mathematics) Algebraic topology Cell aggregation / Mathematics Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Theoretical, Mathematical and Computational Physics Algebraic Geometry Mathematik |
title | Dynamical Systems VIII Singularity Theory II. Applications |
title_auth | Dynamical Systems VIII Singularity Theory II. Applications |
title_exact_search | Dynamical Systems VIII Singularity Theory II. Applications |
title_full | Dynamical Systems VIII Singularity Theory II. Applications edited by V. I. Arnol'd |
title_fullStr | Dynamical Systems VIII Singularity Theory II. Applications edited by V. I. Arnol'd |
title_full_unstemmed | Dynamical Systems VIII Singularity Theory II. Applications edited by V. I. Arnol'd |
title_short | Dynamical Systems VIII |
title_sort | dynamical systems viii singularity theory ii applications |
title_sub | Singularity Theory II. Applications |
topic | Mathematics Geometry, algebraic Global analysis (Mathematics) Algebraic topology Cell aggregation / Mathematics Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Theoretical, Mathematical and Computational Physics Algebraic Geometry Mathematik |
topic_facet | Mathematics Geometry, algebraic Global analysis (Mathematics) Algebraic topology Cell aggregation / Mathematics Algebraic Topology Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Theoretical, Mathematical and Computational Physics Algebraic Geometry Mathematik |
url | https://doi.org/10.1007/978-3-662-06798-7 |
volume_link | (DE-604)BV024126459 |
work_keys_str_mv | AT arnoldvi dynamicalsystemsviiisingularitytheoryiiapplications |