Dynamical Systems VII: Integrable Systems Nonholonomic Dynamical Systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 0. A nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term 'holonomic' is due to Hertz and means 'universal', 'integral', 'integrable' (literally, oA.o |
Beschreibung: | 1 Online-Ressource (VII, 344 p) |
ISBN: | 9783662067963 9783642057380 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-06796-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423385 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783662067963 |c Online |9 978-3-662-06796-3 | ||
020 | |a 9783642057380 |c Print |9 978-3-642-05738-0 | ||
024 | 7 | |a 10.1007/978-3-662-06796-3 |2 doi | |
035 | |a (OCoLC)867184476 | ||
035 | |a (DE-599)BVBBV042423385 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Arnol’d, V. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamical Systems VII |b Integrable Systems Nonholonomic Dynamical Systems |c edited by V. I. Arnol’d, S. P. Novikov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VII, 344 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 16 |x 0938-0396 | |
500 | |a 0. A nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term 'holonomic' is due to Hertz and means 'universal', 'integral', 'integrable' (literally, oA.o | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Novikov, S. P. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06796-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858802 |
Datensatz im Suchindex
_version_ | 1804153099076501504 |
---|---|
any_adam_object | |
author | Arnol’d, V. I. |
author_facet | Arnol’d, V. I. |
author_role | aut |
author_sort | Arnol’d, V. I. |
author_variant | v i a vi via |
building | Verbundindex |
bvnumber | BV042423385 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)867184476 (DE-599)BVBBV042423385 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06796-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02095nmm a2200529zcb4500</leader><controlfield tag="001">BV042423385</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067963</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06796-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642057380</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05738-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06796-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867184476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423385</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnol’d, V. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical Systems VII</subfield><subfield code="b">Integrable Systems Nonholonomic Dynamical Systems</subfield><subfield code="c">edited by V. I. Arnol’d, S. P. Novikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 344 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">16</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0. A nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term 'holonomic' is due to Hertz and means 'universal', 'integral', 'integrable' (literally, oA.o</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, S. P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06796-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858802</subfield></datafield></record></collection> |
id | DE-604.BV042423385 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662067963 9783642057380 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858802 |
oclc_num | 867184476 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 344 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Arnol’d, V. I. Verfasser aut Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems edited by V. I. Arnol’d, S. P. Novikov Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VII, 344 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 16 0938-0396 0. A nonholonomic manifold is a smooth manifold equipped with a smooth distribution. This distribution is in general nonintegrable. The term 'holonomic' is due to Hertz and means 'universal', 'integral', 'integrable' (literally, oA.o Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Cell aggregation / Mathematics Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik Novikov, S. P. Sonstige oth https://doi.org/10.1007/978-3-662-06796-3 Verlag Volltext |
spellingShingle | Arnol’d, V. I. Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Cell aggregation / Mathematics Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
title | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems |
title_auth | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems |
title_exact_search | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems |
title_full | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems edited by V. I. Arnol’d, S. P. Novikov |
title_fullStr | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems edited by V. I. Arnol’d, S. P. Novikov |
title_full_unstemmed | Dynamical Systems VII Integrable Systems Nonholonomic Dynamical Systems edited by V. I. Arnol’d, S. P. Novikov |
title_short | Dynamical Systems VII |
title_sort | dynamical systems vii integrable systems nonholonomic dynamical systems |
title_sub | Integrable Systems Nonholonomic Dynamical Systems |
topic | Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Cell aggregation / Mathematics Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Cell aggregation / Mathematics Analysis Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-06796-3 |
work_keys_str_mv | AT arnoldvi dynamicalsystemsviiintegrablesystemsnonholonomicdynamicalsystems AT novikovsp dynamicalsystemsviiintegrablesystemsnonholonomicdynamicalsystems |