Dynamical Systems II: Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1989
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Following the concept of the EMS series this volume sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and to its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. Then the ergodic theory of smooth dynamical systems is presented - hyperbolic theory, billiards, one-dimensional systems and the elements of KAM theory. Numerous examples are presented carefully along with the ideas underlying the most important results. The last part of the book deals with the dynamical systems of statistical mechanics, and in particular with various kinetic equations. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it |
Beschreibung: | 1 Online-Ressource (IX, 284 p) |
ISBN: | 9783662067888 9783662067901 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-06788-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423382 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9783662067888 |c Online |9 978-3-662-06788-8 | ||
020 | |a 9783662067901 |c Print |9 978-3-662-06790-1 | ||
024 | 7 | |a 10.1007/978-3-662-06788-8 |2 doi | |
035 | |a (OCoLC)859002841 | ||
035 | |a (DE-599)BVBBV042423382 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sinai, Ya. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamical Systems II |b Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics |c edited by Ya. G. Sinai |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1989 | |
300 | |a 1 Online-Ressource (IX, 284 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 2 |x 0938-0396 | |
500 | |a Following the concept of the EMS series this volume sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and to its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. Then the ergodic theory of smooth dynamical systems is presented - hyperbolic theory, billiards, one-dimensional systems and the elements of KAM theory. Numerous examples are presented carefully along with the ideas underlying the most important results. The last part of the book deals with the dynamical systems of statistical mechanics, and in particular with various kinetic equations. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06788-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858799 |
Datensatz im Suchindex
_version_ | 1804153099070210048 |
---|---|
any_adam_object | |
author | Sinai, Ya. G. |
author_facet | Sinai, Ya. G. |
author_role | aut |
author_sort | Sinai, Ya. G. |
author_variant | y g s yg ygs |
building | Verbundindex |
bvnumber | BV042423382 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859002841 (DE-599)BVBBV042423382 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06788-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02331nmm a2200433zcb4500</leader><controlfield tag="001">BV042423382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067888</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06788-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067901</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-06790-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06788-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859002841</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinai, Ya. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical Systems II</subfield><subfield code="b">Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics</subfield><subfield code="c">edited by Ya. G. Sinai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 284 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">2</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Following the concept of the EMS series this volume sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and to its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. Then the ergodic theory of smooth dynamical systems is presented - hyperbolic theory, billiards, one-dimensional systems and the elements of KAM theory. Numerous examples are presented carefully along with the ideas underlying the most important results. The last part of the book deals with the dynamical systems of statistical mechanics, and in particular with various kinetic equations. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06788-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858799</subfield></datafield></record></collection> |
id | DE-604.BV042423382 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662067888 9783662067901 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858799 |
oclc_num | 859002841 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 284 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Sinai, Ya. G. Verfasser aut Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics edited by Ya. G. Sinai Berlin, Heidelberg Springer Berlin Heidelberg 1989 1 Online-Ressource (IX, 284 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 2 0938-0396 Following the concept of the EMS series this volume sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and to its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. Then the ergodic theory of smooth dynamical systems is presented - hyperbolic theory, billiards, one-dimensional systems and the elements of KAM theory. Numerous examples are presented carefully along with the ideas underlying the most important results. The last part of the book deals with the dynamical systems of statistical mechanics, and in particular with various kinetic equations. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it Mathematics Cell aggregation / Mathematics Real Functions Manifolds and Cell Complexes (incl. Diff.Topology) Statistical Physics, Dynamical Systems and Complexity Mathematik https://doi.org/10.1007/978-3-662-06788-8 Verlag Volltext |
spellingShingle | Sinai, Ya. G. Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics Mathematics Cell aggregation / Mathematics Real Functions Manifolds and Cell Complexes (incl. Diff.Topology) Statistical Physics, Dynamical Systems and Complexity Mathematik |
title | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics |
title_auth | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics |
title_exact_search | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics |
title_full | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics edited by Ya. G. Sinai |
title_fullStr | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics edited by Ya. G. Sinai |
title_full_unstemmed | Dynamical Systems II Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics edited by Ya. G. Sinai |
title_short | Dynamical Systems II |
title_sort | dynamical systems ii ergodic theory with applications to dynamical systems and statistical mechanics |
title_sub | Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics |
topic | Mathematics Cell aggregation / Mathematics Real Functions Manifolds and Cell Complexes (incl. Diff.Topology) Statistical Physics, Dynamical Systems and Complexity Mathematik |
topic_facet | Mathematics Cell aggregation / Mathematics Real Functions Manifolds and Cell Complexes (incl. Diff.Topology) Statistical Physics, Dynamical Systems and Complexity Mathematik |
url | https://doi.org/10.1007/978-3-662-06788-8 |
work_keys_str_mv | AT sinaiyag dynamicalsystemsiiergodictheorywithapplicationstodynamicalsystemsandstatisticalmechanics |