Commutative Harmonic Analysis IV: Harmonic Analysis in IRn
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this volume of the series "Commutative Harmonie Analysis", three points mentioned in the preface to the first volume are realized: 1) Multiple Fourier series and Fourier integrals; 2) The machinery of singular integrals; 3) Exceptional sets in harmonic analysis. The first theme is the subject matter of the contribution by Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, which in an obvious way constitutes the "multidimensional parallel" to S. V. Kislyakov's article in Volume I, devoted to the "inner" questions of Fourier analysis of functions of one variable. The passage to the analysis of functions defined on ]Rn, n > 1, tells us something essential about the nature of the problem under study. The contribution by E. M. Dyn'kin, the beginning of which was already published in Volume I of this subseries, is devoted to singular integrals. Besides classical material (Calderon-Zygmund and Littlewood-Paley theory), this article contains an exposition of recent results, which in an essential way have widened the scope of the whole area and have made it possible to solve many old problems, thereby sometimes transcending the very frames of harmonic analysis in its canonical interpretation |
Beschreibung: | 1 Online-Ressource (IX, 230 p) |
ISBN: | 9783662063019 9783642081033 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-06301-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423371 | ||
003 | DE-604 | ||
005 | 20161208 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783662063019 |c Online |9 978-3-662-06301-9 | ||
020 | |a 9783642081033 |c Print |9 978-3-642-08103-3 | ||
024 | 7 | |a 10.1007/978-3-662-06301-9 |2 doi | |
035 | |a (OCoLC)864037880 | ||
035 | |a (DE-599)BVBBV042423371 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chavin, Viktor P. |d 1933-2015 |e Verfasser |0 (DE-588)140937579 |4 aut | |
245 | 1 | 0 | |a Commutative Harmonic Analysis IV |b Harmonic Analysis in IRn |c edited by V. P. Khavin, N. K. Nikol'skiǐ |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (IX, 230 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 42 |x 0938-0396 | |
500 | |a In this volume of the series "Commutative Harmonie Analysis", three points mentioned in the preface to the first volume are realized: 1) Multiple Fourier series and Fourier integrals; 2) The machinery of singular integrals; 3) Exceptional sets in harmonic analysis. The first theme is the subject matter of the contribution by Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, which in an obvious way constitutes the "multidimensional parallel" to S. V. Kislyakov's article in Volume I, devoted to the "inner" questions of Fourier analysis of functions of one variable. The passage to the analysis of functions defined on ]Rn, n > 1, tells us something essential about the nature of the problem under study. The contribution by E. M. Dyn'kin, the beginning of which was already published in Volume I of this subseries, is devoted to singular integrals. Besides classical material (Calderon-Zygmund and Littlewood-Paley theory), this article contains an exposition of recent results, which in an essential way have widened the scope of the whole area and have made it possible to solve many old problems, thereby sometimes transcending the very frames of harmonic analysis in its canonical interpretation | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Nikol'skiǐ, N. K. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06301-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858788 |
Datensatz im Suchindex
_version_ | 1804153099049238528 |
---|---|
any_adam_object | |
author | Chavin, Viktor P. 1933-2015 |
author_GND | (DE-588)140937579 |
author_facet | Chavin, Viktor P. 1933-2015 |
author_role | aut |
author_sort | Chavin, Viktor P. 1933-2015 |
author_variant | v p c vp vpc |
building | Verbundindex |
bvnumber | BV042423371 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864037880 (DE-599)BVBBV042423371 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06301-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02712nmm a2200445zcb4500</leader><controlfield tag="001">BV042423371</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662063019</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06301-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081033</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08103-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06301-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864037880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423371</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chavin, Viktor P.</subfield><subfield code="d">1933-2015</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140937579</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative Harmonic Analysis IV</subfield><subfield code="b">Harmonic Analysis in IRn</subfield><subfield code="c">edited by V. P. Khavin, N. K. Nikol'skiǐ</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 230 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">42</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this volume of the series "Commutative Harmonie Analysis", three points mentioned in the preface to the first volume are realized: 1) Multiple Fourier series and Fourier integrals; 2) The machinery of singular integrals; 3) Exceptional sets in harmonic analysis. The first theme is the subject matter of the contribution by Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, which in an obvious way constitutes the "multidimensional parallel" to S. V. Kislyakov's article in Volume I, devoted to the "inner" questions of Fourier analysis of functions of one variable. The passage to the analysis of functions defined on ]Rn, n > 1, tells us something essential about the nature of the problem under study. The contribution by E. M. Dyn'kin, the beginning of which was already published in Volume I of this subseries, is devoted to singular integrals. Besides classical material (Calderon-Zygmund and Littlewood-Paley theory), this article contains an exposition of recent results, which in an essential way have widened the scope of the whole area and have made it possible to solve many old problems, thereby sometimes transcending the very frames of harmonic analysis in its canonical interpretation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikol'skiǐ, N. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06301-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858788</subfield></datafield></record></collection> |
id | DE-604.BV042423371 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662063019 9783642081033 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858788 |
oclc_num | 864037880 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 230 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Chavin, Viktor P. 1933-2015 Verfasser (DE-588)140937579 aut Commutative Harmonic Analysis IV Harmonic Analysis in IRn edited by V. P. Khavin, N. K. Nikol'skiǐ Berlin, Heidelberg Springer Berlin Heidelberg 1992 1 Online-Ressource (IX, 230 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 42 0938-0396 In this volume of the series "Commutative Harmonie Analysis", three points mentioned in the preface to the first volume are realized: 1) Multiple Fourier series and Fourier integrals; 2) The machinery of singular integrals; 3) Exceptional sets in harmonic analysis. The first theme is the subject matter of the contribution by Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, which in an obvious way constitutes the "multidimensional parallel" to S. V. Kislyakov's article in Volume I, devoted to the "inner" questions of Fourier analysis of functions of one variable. The passage to the analysis of functions defined on ]Rn, n > 1, tells us something essential about the nature of the problem under study. The contribution by E. M. Dyn'kin, the beginning of which was already published in Volume I of this subseries, is devoted to singular integrals. Besides classical material (Calderon-Zygmund and Littlewood-Paley theory), this article contains an exposition of recent results, which in an essential way have widened the scope of the whole area and have made it possible to solve many old problems, thereby sometimes transcending the very frames of harmonic analysis in its canonical interpretation Mathematics Topological Groups Global analysis (Mathematics) Analysis Topological Groups, Lie Groups Mathematik Nikol'skiǐ, N. K. Sonstige oth https://doi.org/10.1007/978-3-662-06301-9 Verlag Volltext |
spellingShingle | Chavin, Viktor P. 1933-2015 Commutative Harmonic Analysis IV Harmonic Analysis in IRn Mathematics Topological Groups Global analysis (Mathematics) Analysis Topological Groups, Lie Groups Mathematik |
title | Commutative Harmonic Analysis IV Harmonic Analysis in IRn |
title_auth | Commutative Harmonic Analysis IV Harmonic Analysis in IRn |
title_exact_search | Commutative Harmonic Analysis IV Harmonic Analysis in IRn |
title_full | Commutative Harmonic Analysis IV Harmonic Analysis in IRn edited by V. P. Khavin, N. K. Nikol'skiǐ |
title_fullStr | Commutative Harmonic Analysis IV Harmonic Analysis in IRn edited by V. P. Khavin, N. K. Nikol'skiǐ |
title_full_unstemmed | Commutative Harmonic Analysis IV Harmonic Analysis in IRn edited by V. P. Khavin, N. K. Nikol'skiǐ |
title_short | Commutative Harmonic Analysis IV |
title_sort | commutative harmonic analysis iv harmonic analysis in irn |
title_sub | Harmonic Analysis in IRn |
topic | Mathematics Topological Groups Global analysis (Mathematics) Analysis Topological Groups, Lie Groups Mathematik |
topic_facet | Mathematics Topological Groups Global analysis (Mathematics) Analysis Topological Groups, Lie Groups Mathematik |
url | https://doi.org/10.1007/978-3-662-06301-9 |
work_keys_str_mv | AT chavinviktorp commutativeharmonicanalysisivharmonicanalysisinirn AT nikolskiink commutativeharmonicanalysisivharmonicanalysisinirn |