Numerical Optimization: Theoretical and Practical Aspects
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Starting with illustrative real-world examples, this book exposes in a tutorial way algorithms for numerical optimization: fundamental ones (Newtonian methods, line-searches, trust-region, sequential quadratic programming, etc.), as well as more specialized and advanced ones (nonsmooth optimization, decomposition techniques, and interior-point methods). Most of these algorithms are explained in a detailed manner, allowing straightforward implementation. Theoretical aspects are addressed with care, often using minimal assumptions. The present version contains substantial changes with respect to the first edition. Part I on unconstrained optimization has been completed with a section on quadratic programming. Part II on nonsmooth optimization has been thoroughly reorganized and expanded. In addition, nontrivial application problems have been inserted, in the form of computational exercises. These should help the reader to get a better understanding of optimization methods beyond their abstract description, by addressing important features to be taken into account when passing to implementation of any numerical algorithm. This level of detail is intended to familiarize the reader with some of the crucial questions of numerical optimization: how algorithms operate, why they converge, difficulties that may be encountered and their possible remedies |
Beschreibung: | 1 Online-Ressource (XIII, 423 p) |
ISBN: | 9783662050781 9783540001911 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-662-05078-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423339 | ||
003 | DE-604 | ||
005 | 20170906 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783662050781 |c Online |9 978-3-662-05078-1 | ||
020 | |a 9783540001911 |c Print |9 978-3-540-00191-1 | ||
024 | 7 | |a 10.1007/978-3-662-05078-1 |2 doi | |
035 | |a (OCoLC)905447177 | ||
035 | |a (DE-599)BVBBV042423339 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
084 | |a MAT 650f |2 stub | ||
084 | |a MAT 910f |2 stub | ||
100 | 1 | |a Bonnans, J. Frédéric |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Optimization |b Theoretical and Practical Aspects |c by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 423 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Starting with illustrative real-world examples, this book exposes in a tutorial way algorithms for numerical optimization: fundamental ones (Newtonian methods, line-searches, trust-region, sequential quadratic programming, etc.), as well as more specialized and advanced ones (nonsmooth optimization, decomposition techniques, and interior-point methods). Most of these algorithms are explained in a detailed manner, allowing straightforward implementation. Theoretical aspects are addressed with care, often using minimal assumptions. The present version contains substantial changes with respect to the first edition. Part I on unconstrained optimization has been completed with a section on quadratic programming. Part II on nonsmooth optimization has been thoroughly reorganized and expanded. In addition, nontrivial application problems have been inserted, in the form of computational exercises. These should help the reader to get a better understanding of optimization methods beyond their abstract description, by addressing important features to be taken into account when passing to implementation of any numerical algorithm. This level of detail is intended to familiarize the reader with some of the crucial questions of numerical optimization: how algorithms operate, why they converge, difficulties that may be encountered and their possible remedies | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer software | |
650 | 4 | |a Computer science | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Engineering | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Algorithm Analysis and Problem Complexity | |
650 | 4 | |a Mathematics of Computing | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Informatik | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gilbert, J. Charles |e Sonstige |4 oth | |
700 | 1 | |a Lemaréchal, Claude |e Sonstige |4 oth | |
700 | 1 | |a Sagastizábal, Claudia A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-05078-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858756 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098950672384 |
---|---|
any_adam_object | |
author | Bonnans, J. Frédéric |
author_facet | Bonnans, J. Frédéric |
author_role | aut |
author_sort | Bonnans, J. Frédéric |
author_variant | j f b jf jfb |
building | Verbundindex |
bvnumber | BV042423339 |
classification_tum | MAT 000 MAT 650f MAT 910f |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905447177 (DE-599)BVBBV042423339 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-05078-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03797nmm a2200673zc 4500</leader><controlfield tag="001">BV042423339</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170906 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662050781</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-05078-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540001911</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-00191-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-05078-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905447177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 650f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 910f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonnans, J. Frédéric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Optimization</subfield><subfield code="b">Theoretical and Practical Aspects</subfield><subfield code="c">by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 423 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Starting with illustrative real-world examples, this book exposes in a tutorial way algorithms for numerical optimization: fundamental ones (Newtonian methods, line-searches, trust-region, sequential quadratic programming, etc.), as well as more specialized and advanced ones (nonsmooth optimization, decomposition techniques, and interior-point methods). Most of these algorithms are explained in a detailed manner, allowing straightforward implementation. Theoretical aspects are addressed with care, often using minimal assumptions. The present version contains substantial changes with respect to the first edition. Part I on unconstrained optimization has been completed with a section on quadratic programming. Part II on nonsmooth optimization has been thoroughly reorganized and expanded. In addition, nontrivial application problems have been inserted, in the form of computational exercises. These should help the reader to get a better understanding of optimization methods beyond their abstract description, by addressing important features to be taken into account when passing to implementation of any numerical algorithm. This level of detail is intended to familiarize the reader with some of the crucial questions of numerical optimization: how algorithms operate, why they converge, difficulties that may be encountered and their possible remedies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm Analysis and Problem Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics of Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilbert, J. Charles</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemaréchal, Claude</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagastizábal, Claudia A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-05078-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858756</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423339 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662050781 9783540001911 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858756 |
oclc_num | 905447177 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 423 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Bonnans, J. Frédéric Verfasser aut Numerical Optimization Theoretical and Practical Aspects by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XIII, 423 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Starting with illustrative real-world examples, this book exposes in a tutorial way algorithms for numerical optimization: fundamental ones (Newtonian methods, line-searches, trust-region, sequential quadratic programming, etc.), as well as more specialized and advanced ones (nonsmooth optimization, decomposition techniques, and interior-point methods). Most of these algorithms are explained in a detailed manner, allowing straightforward implementation. Theoretical aspects are addressed with care, often using minimal assumptions. The present version contains substantial changes with respect to the first edition. Part I on unconstrained optimization has been completed with a section on quadratic programming. Part II on nonsmooth optimization has been thoroughly reorganized and expanded. In addition, nontrivial application problems have been inserted, in the form of computational exercises. These should help the reader to get a better understanding of optimization methods beyond their abstract description, by addressing important features to be taken into account when passing to implementation of any numerical algorithm. This level of detail is intended to familiarize the reader with some of the crucial questions of numerical optimization: how algorithms operate, why they converge, difficulties that may be encountered and their possible remedies Mathematics Computer software Computer science Numerical analysis Mathematical optimization Engineering Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Numerical Analysis Algorithm Analysis and Problem Complexity Mathematics of Computing Computational Intelligence Informatik Ingenieurwissenschaften Mathematik Optimierung (DE-588)4043664-0 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Optimierung (DE-588)4043664-0 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Gilbert, J. Charles Sonstige oth Lemaréchal, Claude Sonstige oth Sagastizábal, Claudia A. Sonstige oth https://doi.org/10.1007/978-3-662-05078-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bonnans, J. Frédéric Numerical Optimization Theoretical and Practical Aspects Mathematics Computer software Computer science Numerical analysis Mathematical optimization Engineering Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Numerical Analysis Algorithm Analysis and Problem Complexity Mathematics of Computing Computational Intelligence Informatik Ingenieurwissenschaften Mathematik Optimierung (DE-588)4043664-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4128130-5 |
title | Numerical Optimization Theoretical and Practical Aspects |
title_auth | Numerical Optimization Theoretical and Practical Aspects |
title_exact_search | Numerical Optimization Theoretical and Practical Aspects |
title_full | Numerical Optimization Theoretical and Practical Aspects by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal |
title_fullStr | Numerical Optimization Theoretical and Practical Aspects by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal |
title_full_unstemmed | Numerical Optimization Theoretical and Practical Aspects by J. Frédéric Bonnans, J. Charles Gilbert, Claude Lemaréchal, Claudia A. Sagastizábal |
title_short | Numerical Optimization |
title_sort | numerical optimization theoretical and practical aspects |
title_sub | Theoretical and Practical Aspects |
topic | Mathematics Computer software Computer science Numerical analysis Mathematical optimization Engineering Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Numerical Analysis Algorithm Analysis and Problem Complexity Mathematics of Computing Computational Intelligence Informatik Ingenieurwissenschaften Mathematik Optimierung (DE-588)4043664-0 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematics Computer software Computer science Numerical analysis Mathematical optimization Engineering Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Numerical Analysis Algorithm Analysis and Problem Complexity Mathematics of Computing Computational Intelligence Informatik Ingenieurwissenschaften Mathematik Optimierung Numerisches Verfahren |
url | https://doi.org/10.1007/978-3-662-05078-1 |
work_keys_str_mv | AT bonnansjfrederic numericaloptimizationtheoreticalandpracticalaspects AT gilbertjcharles numericaloptimizationtheoreticalandpracticalaspects AT lemarechalclaude numericaloptimizationtheoreticalandpracticalaspects AT sagastizabalclaudiaa numericaloptimizationtheoreticalandpracticalaspects |