Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hairer, Ernst (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 2002
Schriftenreihe:Springer Series in Computational Mathematics 31
Schlagworte:
Online-Zugang:Volltext
Beschreibung:The subject of this book is numerical methods that preserve geometric properties of the flow of a differential equation: symplectic integrators for Hamiltonian systems, symmetric integrators for reversible systems, methods preserving first integrals and numerical methods on manifolds, including Lie group methods and integrators for constrained mechanical systems, and methods for problems with highly oscillatory solutions. A complete theory of symplectic and symmetric Runge-Kutta, composition, splitting, multistep and various specially designed integrators is presented, and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory and related perturbation theories. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches
Beschreibung:1 Online-Ressource (XIII, 515 p)
ISBN:9783662050187
9783662050200
ISSN:0179-3632
DOI:10.1007/978-3-662-05018-7

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen