Mathematics and Art: Mathematical Visualization in Art and Education
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Schriftenreihe: | Mathematics and Visualization
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work. This book emphasizes and renews the deep relation between Mathematics and Art. The Forum Discussion suggests to develop a deeper interpenetration between these two cultural fields, notably in the teaching of both Mathematics and Art |
Beschreibung: | 1 Online-Ressource (X, 337 p) |
ISBN: | 9783662049099 9783642077821 |
ISSN: | 1612-3786 |
DOI: | 10.1007/978-3-662-04909-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423331 | ||
003 | DE-604 | ||
005 | 20161122 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662049099 |c Online |9 978-3-662-04909-9 | ||
020 | |a 9783642077821 |c Print |9 978-3-642-07782-1 | ||
024 | 7 | |a 10.1007/978-3-662-04909-9 |2 doi | |
035 | |a (OCoLC)863989048 | ||
035 | |a (DE-599)BVBBV042423331 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bruter, Claude P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematics and Art |b Mathematical Visualization in Art and Education |c edited by Claude P. Bruter |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (X, 337 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Visualization |x 1612-3786 | |
500 | |a Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work. This book emphasizes and renews the deep relation between Mathematics and Art. The Forum Discussion suggests to develop a deeper interpenetration between these two cultural fields, notably in the teaching of both Mathematics and Art | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Visualization | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematisches Objekt |0 (DE-588)4169106-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Maubeuge |2 gnd-content | |
689 | 0 | 0 | |a Mathematisches Objekt |0 (DE-588)4169106-4 |D s |
689 | 0 | 1 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04909-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858748 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098941235200 |
---|---|
any_adam_object | |
author | Bruter, Claude P. |
author_facet | Bruter, Claude P. |
author_role | aut |
author_sort | Bruter, Claude P. |
author_variant | c p b cp cpb |
building | Verbundindex |
bvnumber | BV042423331 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863989048 (DE-599)BVBBV042423331 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-662-04909-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03035nmm a2200541zc 4500</leader><controlfield tag="001">BV042423331</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161122 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662049099</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04909-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642077821</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07782-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04909-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863989048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423331</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruter, Claude P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics and Art</subfield><subfield code="b">Mathematical Visualization in Art and Education</subfield><subfield code="c">edited by Claude P. Bruter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 337 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Visualization</subfield><subfield code="x">1612-3786</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work. This book emphasizes and renews the deep relation between Mathematics and Art. The Forum Discussion suggests to develop a deeper interpenetration between these two cultural fields, notably in the teaching of both Mathematics and Art</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Objekt</subfield><subfield code="0">(DE-588)4169106-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Maubeuge</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematisches Objekt</subfield><subfield code="0">(DE-588)4169106-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04909-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858748</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2000 Maubeuge gnd-content |
genre_facet | Konferenzschrift 2000 Maubeuge |
id | DE-604.BV042423331 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662049099 9783642077821 |
issn | 1612-3786 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858748 |
oclc_num | 863989048 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 337 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Mathematics and Visualization |
spelling | Bruter, Claude P. Verfasser aut Mathematics and Art Mathematical Visualization in Art and Education edited by Claude P. Bruter Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (X, 337 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Visualization 1612-3786 Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work. This book emphasizes and renews the deep relation between Mathematics and Art. The Forum Discussion suggests to develop a deeper interpenetration between these two cultural fields, notably in the teaching of both Mathematics and Art Mathematics Computer vision Visualization Geometry Topology Computer Imaging, Vision, Pattern Recognition and Graphics Mathematik Mathematisches Objekt (DE-588)4169106-4 gnd rswk-swf Visualisierung (DE-588)4188417-6 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2000 Maubeuge gnd-content Mathematisches Objekt (DE-588)4169106-4 s Visualisierung (DE-588)4188417-6 s 2\p DE-604 https://doi.org/10.1007/978-3-662-04909-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bruter, Claude P. Mathematics and Art Mathematical Visualization in Art and Education Mathematics Computer vision Visualization Geometry Topology Computer Imaging, Vision, Pattern Recognition and Graphics Mathematik Mathematisches Objekt (DE-588)4169106-4 gnd Visualisierung (DE-588)4188417-6 gnd |
subject_GND | (DE-588)4169106-4 (DE-588)4188417-6 (DE-588)1071861417 |
title | Mathematics and Art Mathematical Visualization in Art and Education |
title_auth | Mathematics and Art Mathematical Visualization in Art and Education |
title_exact_search | Mathematics and Art Mathematical Visualization in Art and Education |
title_full | Mathematics and Art Mathematical Visualization in Art and Education edited by Claude P. Bruter |
title_fullStr | Mathematics and Art Mathematical Visualization in Art and Education edited by Claude P. Bruter |
title_full_unstemmed | Mathematics and Art Mathematical Visualization in Art and Education edited by Claude P. Bruter |
title_short | Mathematics and Art |
title_sort | mathematics and art mathematical visualization in art and education |
title_sub | Mathematical Visualization in Art and Education |
topic | Mathematics Computer vision Visualization Geometry Topology Computer Imaging, Vision, Pattern Recognition and Graphics Mathematik Mathematisches Objekt (DE-588)4169106-4 gnd Visualisierung (DE-588)4188417-6 gnd |
topic_facet | Mathematics Computer vision Visualization Geometry Topology Computer Imaging, Vision, Pattern Recognition and Graphics Mathematik Mathematisches Objekt Visualisierung Konferenzschrift 2000 Maubeuge |
url | https://doi.org/10.1007/978-3-662-04909-9 |
work_keys_str_mv | AT bruterclaudep mathematicsandartmathematicalvisualizationinartandeducation |