Computations in Algebraic Geometry with Macaulay 2:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Schriftenreihe: | Algorithms and Computation in Mathematics
8 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all |
Beschreibung: | 1 Online-Ressource (XV, 329 p) |
ISBN: | 9783662048511 9783642075926 |
ISSN: | 1431-1550 |
DOI: | 10.1007/978-3-662-04851-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423330 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662048511 |c Online |9 978-3-662-04851-1 | ||
020 | |a 9783642075926 |c Print |9 978-3-642-07592-6 | ||
024 | 7 | |a 10.1007/978-3-662-04851-1 |2 doi | |
035 | |a (OCoLC)863902067 | ||
035 | |a (DE-599)BVBBV042423330 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eisenbud, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computations in Algebraic Geometry with Macaulay 2 |c edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (XV, 329 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Algorithms and Computation in Mathematics |v 8 |x 1431-1550 | |
500 | |a Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra / Data processing | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Macaulay 2 |0 (DE-588)4658066-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 2 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | 1 | |a Macaulay 2 |0 (DE-588)4658066-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Stillman, Michael |e Sonstige |4 oth | |
700 | 1 | |a Grayson, Daniel R. |e Sonstige |4 oth | |
700 | 1 | |a Sturmfels, Bernd |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04851-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858747 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098929700864 |
---|---|
any_adam_object | |
author | Eisenbud, David |
author_facet | Eisenbud, David |
author_role | aut |
author_sort | Eisenbud, David |
author_variant | d e de |
building | Verbundindex |
bvnumber | BV042423330 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863902067 (DE-599)BVBBV042423330 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04851-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04106nmm a2200649zcb4500</leader><controlfield tag="001">BV042423330</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662048511</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04851-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642075926</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07592-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04851-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863902067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423330</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisenbud, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computations in Algebraic Geometry with Macaulay 2</subfield><subfield code="c">edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 329 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Algorithms and Computation in Mathematics</subfield><subfield code="v">8</subfield><subfield code="x">1431-1550</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Macaulay 2</subfield><subfield code="0">(DE-588)4658066-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Macaulay 2</subfield><subfield code="0">(DE-588)4658066-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stillman, Michael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grayson, Daniel R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sturmfels, Bernd</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04851-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858747</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423330 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662048511 9783642075926 |
issn | 1431-1550 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858747 |
oclc_num | 863902067 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 329 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Algorithms and Computation in Mathematics |
spelling | Eisenbud, David Verfasser aut Computations in Algebraic Geometry with Macaulay 2 edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (XV, 329 p) txt rdacontent c rdamedia cr rdacarrier Algorithms and Computation in Mathematics 8 1431-1550 Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all Mathematics Algebra / Data processing Geometry, algebraic Combinatorics Algebraic Geometry Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Macaulay 2 (DE-588)4658066-9 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s Algorithmus (DE-588)4001183-5 s Datenverarbeitung (DE-588)4011152-0 s 1\p DE-604 Macaulay 2 (DE-588)4658066-9 s 2\p DE-604 Stillman, Michael Sonstige oth Grayson, Daniel R. Sonstige oth Sturmfels, Bernd Sonstige oth https://doi.org/10.1007/978-3-662-04851-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eisenbud, David Computations in Algebraic Geometry with Macaulay 2 Mathematics Algebra / Data processing Geometry, algebraic Combinatorics Algebraic Geometry Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Macaulay 2 (DE-588)4658066-9 gnd Algorithmus (DE-588)4001183-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
subject_GND | (DE-588)4658066-9 (DE-588)4001183-5 (DE-588)4001161-6 (DE-588)4011152-0 |
title | Computations in Algebraic Geometry with Macaulay 2 |
title_auth | Computations in Algebraic Geometry with Macaulay 2 |
title_exact_search | Computations in Algebraic Geometry with Macaulay 2 |
title_full | Computations in Algebraic Geometry with Macaulay 2 edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels |
title_fullStr | Computations in Algebraic Geometry with Macaulay 2 edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels |
title_full_unstemmed | Computations in Algebraic Geometry with Macaulay 2 edited by David Eisenbud, Michael Stillman, Daniel R. Grayson, Bernd Sturmfels |
title_short | Computations in Algebraic Geometry with Macaulay 2 |
title_sort | computations in algebraic geometry with macaulay 2 |
topic | Mathematics Algebra / Data processing Geometry, algebraic Combinatorics Algebraic Geometry Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Macaulay 2 (DE-588)4658066-9 gnd Algorithmus (DE-588)4001183-5 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
topic_facet | Mathematics Algebra / Data processing Geometry, algebraic Combinatorics Algebraic Geometry Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Macaulay 2 Algorithmus Algebraische Geometrie |
url | https://doi.org/10.1007/978-3-662-04851-1 |
work_keys_str_mv | AT eisenbuddavid computationsinalgebraicgeometrywithmacaulay2 AT stillmanmichael computationsinalgebraicgeometrywithmacaulay2 AT graysondanielr computationsinalgebraicgeometrywithmacaulay2 AT sturmfelsbernd computationsinalgebraicgeometrywithmacaulay2 |