Invariants for Homology 3-Spheres:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology
140 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered in the book are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its numerous extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, followed by Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics |
Beschreibung: | 1 Online-Ressource (XII, 223 p) |
ISBN: | 9783662047057 9783642078491 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-04705-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423319 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662047057 |c Online |9 978-3-662-04705-7 | ||
020 | |a 9783642078491 |c Print |9 978-3-642-07849-1 | ||
024 | 7 | |a 10.1007/978-3-662-04705-7 |2 doi | |
035 | |a (OCoLC)864041992 | ||
035 | |a (DE-599)BVBBV042423319 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Saveliev, Nikolai |e Verfasser |4 aut | |
245 | 1 | 0 | |a Invariants for Homology 3-Spheres |c by Nikolai Saveliev |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (XII, 223 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology |v 140 |x 0938-0396 | |
500 | |a Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered in the book are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its numerous extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, followed by Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologiesphäre |0 (DE-588)4284581-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Niederdimensionale Topologie |0 (DE-588)4280826-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologiesphäre |0 (DE-588)4284581-6 |D s |
689 | 0 | 1 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Niederdimensionale Topologie |0 (DE-588)4280826-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04705-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858736 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098887757824 |
---|---|
any_adam_object | |
author | Saveliev, Nikolai |
author_facet | Saveliev, Nikolai |
author_role | aut |
author_sort | Saveliev, Nikolai |
author_variant | n s ns |
building | Verbundindex |
bvnumber | BV042423319 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864041992 (DE-599)BVBBV042423319 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04705-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03025nmm a2200541zcb4500</leader><controlfield tag="001">BV042423319</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662047057</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04705-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642078491</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07849-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04705-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864041992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423319</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saveliev, Nikolai</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariants for Homology 3-Spheres</subfield><subfield code="c">by Nikolai Saveliev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 223 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology</subfield><subfield code="v">140</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered in the book are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its numerous extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, followed by Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologiesphäre</subfield><subfield code="0">(DE-588)4284581-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Niederdimensionale Topologie</subfield><subfield code="0">(DE-588)4280826-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologiesphäre</subfield><subfield code="0">(DE-588)4284581-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Niederdimensionale Topologie</subfield><subfield code="0">(DE-588)4280826-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04705-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858736</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423319 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662047057 9783642078491 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858736 |
oclc_num | 864041992 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 223 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology |
spelling | Saveliev, Nikolai Verfasser aut Invariants for Homology 3-Spheres by Nikolai Saveliev Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (XII, 223 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences, Low-Dimensional Topology 140 0938-0396 Homology 3-sphere is a closed 3-dimensional manifold whose homology equals that of the 3-sphere. These objects may look rather special but they have played an outstanding role in geometric topology for the past fifty years. The book gives a systematic exposition of diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered in the book are constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its numerous extensions, including invariants of Walker and Lescop, Herald and Lin invariants of knots, and equivariant Casson invariants, followed by Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. It will be appealing to both graduate students and researchers in mathematics and theoretical physics Mathematics Geometry Topology Theoretical, Mathematical and Computational Physics Mathematik Invariante (DE-588)4128781-2 gnd rswk-swf Homologiesphäre (DE-588)4284581-6 gnd rswk-swf Niederdimensionale Topologie (DE-588)4280826-1 gnd rswk-swf Homologiesphäre (DE-588)4284581-6 s Invariante (DE-588)4128781-2 s 1\p DE-604 Niederdimensionale Topologie (DE-588)4280826-1 s 2\p DE-604 https://doi.org/10.1007/978-3-662-04705-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Saveliev, Nikolai Invariants for Homology 3-Spheres Mathematics Geometry Topology Theoretical, Mathematical and Computational Physics Mathematik Invariante (DE-588)4128781-2 gnd Homologiesphäre (DE-588)4284581-6 gnd Niederdimensionale Topologie (DE-588)4280826-1 gnd |
subject_GND | (DE-588)4128781-2 (DE-588)4284581-6 (DE-588)4280826-1 |
title | Invariants for Homology 3-Spheres |
title_auth | Invariants for Homology 3-Spheres |
title_exact_search | Invariants for Homology 3-Spheres |
title_full | Invariants for Homology 3-Spheres by Nikolai Saveliev |
title_fullStr | Invariants for Homology 3-Spheres by Nikolai Saveliev |
title_full_unstemmed | Invariants for Homology 3-Spheres by Nikolai Saveliev |
title_short | Invariants for Homology 3-Spheres |
title_sort | invariants for homology 3 spheres |
topic | Mathematics Geometry Topology Theoretical, Mathematical and Computational Physics Mathematik Invariante (DE-588)4128781-2 gnd Homologiesphäre (DE-588)4284581-6 gnd Niederdimensionale Topologie (DE-588)4280826-1 gnd |
topic_facet | Mathematics Geometry Topology Theoretical, Mathematical and Computational Physics Mathematik Invariante Homologiesphäre Niederdimensionale Topologie |
url | https://doi.org/10.1007/978-3-662-04705-7 |
work_keys_str_mv | AT savelievnikolai invariantsforhomology3spheres |