Moufang Polygons:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Spherical buildings are certain combinatorial simplicial complexes introduced, at first in the language of "incidence geometries," to provide a systematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic group of positive relative rank £ is associated a thick irreducible spherical building of the same rank (these are the algebraic spherical buildings) and the main result of Buildings of Spherical Type and Finite BN-Pairs [101] is that the converse, for £ ::::: 3, is almost true: (1. 1) Theorem. Every thick irreducible spherical building of rank at least three is classical, algebraic' or mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-field. (These are not algebraic if, for instance, the skew-field is of infinite dimension over its center. ) Mixed buildings are more exotic; they are related to groups which are in some sense algebraic groups defined over a pair of fields k and K of characteristic p, where KP eke K and p is two or (in one case) three |
Beschreibung: | 1 Online-Ressource (X, 535 p) |
ISBN: | 9783662046890 9783642078330 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-04689-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423318 | ||
003 | DE-604 | ||
005 | 20171218 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662046890 |c Online |9 978-3-662-04689-0 | ||
020 | |a 9783642078330 |c Print |9 978-3-642-07833-0 | ||
024 | 7 | |a 10.1007/978-3-662-04689-0 |2 doi | |
035 | |a (OCoLC)863960099 | ||
035 | |a (DE-599)BVBBV042423318 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tits, Jacques |e Verfasser |4 aut | |
245 | 1 | 0 | |a Moufang Polygons |c by Jacques Tits, Richard M. Weiss |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (X, 535 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a Spherical buildings are certain combinatorial simplicial complexes introduced, at first in the language of "incidence geometries," to provide a systematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic group of positive relative rank £ is associated a thick irreducible spherical building of the same rank (these are the algebraic spherical buildings) and the main result of Buildings of Spherical Type and Finite BN-Pairs [101] is that the converse, for £ ::::: 3, is almost true: (1. 1) Theorem. Every thick irreducible spherical building of rank at least three is classical, algebraic' or mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-field. (These are not algebraic if, for instance, the skew-field is of infinite dimension over its center. ) Mixed buildings are more exotic; they are related to groups which are in some sense algebraic groups defined over a pair of fields k and K of characteristic p, where KP eke K and p is two or (in one case) three | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Verallgemeinertes Polygon |0 (DE-588)4523359-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gebäude |g Mathematik |0 (DE-588)4123258-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verallgemeinertes Polygon |0 (DE-588)4523359-7 |D s |
689 | 0 | 1 | |a Gebäude |g Mathematik |0 (DE-588)4123258-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Weiss, Richard M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04689-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858735 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098898243584 |
---|---|
any_adam_object | |
author | Tits, Jacques |
author_facet | Tits, Jacques |
author_role | aut |
author_sort | Tits, Jacques |
author_variant | j t jt |
building | Verbundindex |
bvnumber | BV042423318 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863960099 (DE-599)BVBBV042423318 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04689-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03392nmm a2200553zc 4500</leader><controlfield tag="001">BV042423318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662046890</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04689-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642078330</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07833-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04689-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863960099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tits, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moufang Polygons</subfield><subfield code="c">by Jacques Tits, Richard M. Weiss</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 535 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Spherical buildings are certain combinatorial simplicial complexes introduced, at first in the language of "incidence geometries," to provide a systematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic group of positive relative rank £ is associated a thick irreducible spherical building of the same rank (these are the algebraic spherical buildings) and the main result of Buildings of Spherical Type and Finite BN-Pairs [101] is that the converse, for £ ::::: 3, is almost true: (1. 1) Theorem. Every thick irreducible spherical building of rank at least three is classical, algebraic' or mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-field. (These are not algebraic if, for instance, the skew-field is of infinite dimension over its center. ) Mixed buildings are more exotic; they are related to groups which are in some sense algebraic groups defined over a pair of fields k and K of characteristic p, where KP eke K and p is two or (in one case) three</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinertes Polygon</subfield><subfield code="0">(DE-588)4523359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gebäude</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4123258-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verallgemeinertes Polygon</subfield><subfield code="0">(DE-588)4523359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gebäude</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4123258-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiss, Richard M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04689-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858735</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423318 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662046890 9783642078330 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858735 |
oclc_num | 863960099 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 535 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Tits, Jacques Verfasser aut Moufang Polygons by Jacques Tits, Richard M. Weiss Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (X, 535 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 Spherical buildings are certain combinatorial simplicial complexes introduced, at first in the language of "incidence geometries," to provide a systematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic group of positive relative rank £ is associated a thick irreducible spherical building of the same rank (these are the algebraic spherical buildings) and the main result of Buildings of Spherical Type and Finite BN-Pairs [101] is that the converse, for £ ::::: 3, is almost true: (1. 1) Theorem. Every thick irreducible spherical building of rank at least three is classical, algebraic' or mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-field. (These are not algebraic if, for instance, the skew-field is of infinite dimension over its center. ) Mixed buildings are more exotic; they are related to groups which are in some sense algebraic groups defined over a pair of fields k and K of characteristic p, where KP eke K and p is two or (in one case) three Mathematics Algebra Geometry, algebraic Group theory Combinatorics Geometry Algebraic Geometry Group Theory and Generalizations Mathematik Verallgemeinertes Polygon (DE-588)4523359-7 gnd rswk-swf Gebäude Mathematik (DE-588)4123258-6 gnd rswk-swf Verallgemeinertes Polygon (DE-588)4523359-7 s Gebäude Mathematik (DE-588)4123258-6 s 1\p DE-604 Weiss, Richard M. Sonstige oth https://doi.org/10.1007/978-3-662-04689-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tits, Jacques Moufang Polygons Mathematics Algebra Geometry, algebraic Group theory Combinatorics Geometry Algebraic Geometry Group Theory and Generalizations Mathematik Verallgemeinertes Polygon (DE-588)4523359-7 gnd Gebäude Mathematik (DE-588)4123258-6 gnd |
subject_GND | (DE-588)4523359-7 (DE-588)4123258-6 |
title | Moufang Polygons |
title_auth | Moufang Polygons |
title_exact_search | Moufang Polygons |
title_full | Moufang Polygons by Jacques Tits, Richard M. Weiss |
title_fullStr | Moufang Polygons by Jacques Tits, Richard M. Weiss |
title_full_unstemmed | Moufang Polygons by Jacques Tits, Richard M. Weiss |
title_short | Moufang Polygons |
title_sort | moufang polygons |
topic | Mathematics Algebra Geometry, algebraic Group theory Combinatorics Geometry Algebraic Geometry Group Theory and Generalizations Mathematik Verallgemeinertes Polygon (DE-588)4523359-7 gnd Gebäude Mathematik (DE-588)4123258-6 gnd |
topic_facet | Mathematics Algebra Geometry, algebraic Group theory Combinatorics Geometry Algebraic Geometry Group Theory and Generalizations Mathematik Verallgemeinertes Polygon Gebäude Mathematik |
url | https://doi.org/10.1007/978-3-662-04689-0 |
work_keys_str_mv | AT titsjacques moufangpolygons AT weissrichardm moufangpolygons |