Riemannian Geometry and Geometric Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Ausgabe: | Third Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr-University Bochum and the University of Leipzig. The first main new feature of the third edition is a new chapter on Morse theory and Floer homology that attempts to explain the relevant ideas and concepts in an elementary manner and with detailed examples |
Beschreibung: | 1 Online-Ressource (XIII, 535 p) |
ISBN: | 9783662046722 9783540426271 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-662-04672-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423316 | ||
003 | DE-604 | ||
005 | 20170926 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662046722 |c Online |9 978-3-662-04672-2 | ||
020 | |a 9783540426271 |c Print |9 978-3-540-42627-1 | ||
024 | 7 | |a 10.1007/978-3-662-04672-2 |2 doi | |
035 | |a (OCoLC)863901538 | ||
035 | |a (DE-599)BVBBV042423316 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jost, Jürgen |d 1956- |e Verfasser |0 (DE-588)115774564 |4 aut | |
245 | 1 | 0 | |a Riemannian Geometry and Geometric Analysis |c by Jürgen Jost |
250 | |a Third Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 535 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr-University Bochum and the University of Leipzig. The first main new feature of the third edition is a new chapter on Morse theory and Floer homology that attempts to explain the relevant ideas and concepts in an elementary manner and with detailed examples | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrische Analysis |0 (DE-588)4156708-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Geometrische Analysis |0 (DE-588)4156708-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04672-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858733 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098893000704 |
---|---|
any_adam_object | |
author | Jost, Jürgen 1956- |
author_GND | (DE-588)115774564 |
author_facet | Jost, Jürgen 1956- |
author_role | aut |
author_sort | Jost, Jürgen 1956- |
author_variant | j j jj |
building | Verbundindex |
bvnumber | BV042423316 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863901538 (DE-599)BVBBV042423316 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04672-2 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03269nmm a2200505zc 4500</leader><controlfield tag="001">BV042423316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170926 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662046722</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04672-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540426271</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-42627-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04672-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863901538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jost, Jürgen</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115774564</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian Geometry and Geometric Analysis</subfield><subfield code="c">by Jürgen Jost</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 535 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr-University Bochum and the University of Leipzig. The first main new feature of the third edition is a new chapter on Morse theory and Floer homology that attempts to explain the relevant ideas and concepts in an elementary manner and with detailed examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04672-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858733</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423316 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662046722 9783540426271 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858733 |
oclc_num | 863901538 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 535 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Jost, Jürgen 1956- Verfasser (DE-588)115774564 aut Riemannian Geometry and Geometric Analysis by Jürgen Jost Third Edition Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (XIII, 535 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Riemannian geometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ... ) and objectives, in particular to understand certain classes of (compact) Riemannian manifolds defined by curvature conditions (constant or positive or negative curvature, ... ). By way of contrast, geometric analysis is a perhaps somewhat less systematic collection of techniques, for solving extremal problems naturally arising in geometry and for investigating and characterizing their solutions. It turns out that the two fields complement each other very well; geometric analysis offers tools for solving difficult problems in geometry, and Riemannian geometry stimulates progress in geometric analysis by setting ambitious goals. It is the aim of this book to be a systematic and comprehensive introduction to Riemannian geometry and a representative introduction to the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. The present work is the third edition of my textbook on Riemannian geometry and geometric analysis. It has developed on the basis of several graduate courses I taught at the Ruhr-University Bochum and the University of Leipzig. The first main new feature of the third edition is a new chapter on Morse theory and Floer homology that attempts to explain the relevant ideas and concepts in an elementary manner and with detailed examples Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Geometrische Analysis (DE-588)4156708-0 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Geometrische Analysis (DE-588)4156708-0 s 1\p DE-604 https://doi.org/10.1007/978-3-662-04672-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jost, Jürgen 1956- Riemannian Geometry and Geometric Analysis Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Geometrische Analysis (DE-588)4156708-0 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4156708-0 (DE-588)4128462-8 |
title | Riemannian Geometry and Geometric Analysis |
title_auth | Riemannian Geometry and Geometric Analysis |
title_exact_search | Riemannian Geometry and Geometric Analysis |
title_full | Riemannian Geometry and Geometric Analysis by Jürgen Jost |
title_fullStr | Riemannian Geometry and Geometric Analysis by Jürgen Jost |
title_full_unstemmed | Riemannian Geometry and Geometric Analysis by Jürgen Jost |
title_short | Riemannian Geometry and Geometric Analysis |
title_sort | riemannian geometry and geometric analysis |
topic | Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Geometrische Analysis (DE-588)4156708-0 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Geometrische Analysis Riemannsche Geometrie |
url | https://doi.org/10.1007/978-3-662-04672-2 |
work_keys_str_mv | AT jostjurgen riemanniangeometryandgeometricanalysis |