Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics
42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories |
Beschreibung: | 1 Online-Ressource (XII, 375 p) |
ISBN: | 9783662045763 9783642074721 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-662-04576-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423313 | ||
003 | DE-604 | ||
005 | 20160714 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783662045763 |c Online |9 978-3-662-04576-3 | ||
020 | |a 9783642074721 |c Print |9 978-3-642-07472-1 | ||
024 | 7 | |a 10.1007/978-3-662-04576-3 |2 doi | |
035 | |a (OCoLC)879623682 | ||
035 | |a (DE-599)BVBBV042423313 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kiehl, Reinhardt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform |c by Reinhardt Kiehl, Rainer Weissauer |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (XII, 375 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |v 42 |x 0071-1136 | |
500 | |a In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a K-theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weil-Vermutung |0 (DE-588)4189446-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Garbentheorie |0 (DE-588)4155956-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Weil-Vermutung |0 (DE-588)4189446-7 |D s |
689 | 0 | 1 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 0 | 2 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Weil-Vermutung |0 (DE-588)4189446-7 |D s |
689 | 1 | 1 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 1 | 2 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Weissauer, Rainer |d 1954- |e Sonstige |0 (DE-588)1051766699 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04576-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858730 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098877272064 |
---|---|
any_adam_object | |
author | Kiehl, Reinhardt |
author_GND | (DE-588)1051766699 |
author_facet | Kiehl, Reinhardt |
author_role | aut |
author_sort | Kiehl, Reinhardt |
author_variant | r k rk |
building | Verbundindex |
bvnumber | BV042423313 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623682 (DE-599)BVBBV042423313 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04576-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03236nmm a2200637zcb4500</leader><controlfield tag="001">BV042423313</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160714 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662045763</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04576-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642074721</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07472-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04576-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423313</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiehl, Reinhardt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform</subfield><subfield code="c">by Reinhardt Kiehl, Rainer Weissauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 375 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics</subfield><subfield code="v">42</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weil-Vermutung</subfield><subfield code="0">(DE-588)4189446-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Weil-Vermutung</subfield><subfield code="0">(DE-588)4189446-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Weil-Vermutung</subfield><subfield code="0">(DE-588)4189446-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weissauer, Rainer</subfield><subfield code="d">1954-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1051766699</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04576-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858730</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423313 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662045763 9783642074721 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858730 |
oclc_num | 879623682 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 375 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |
spelling | Kiehl, Reinhardt Verfasser aut Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform by Reinhardt Kiehl, Rainer Weissauer Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (XII, 375 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics 42 0071-1136 In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories Mathematics Geometry, algebraic Group theory K-theory Algebraic Geometry Group Theory and Generalizations K-Theory Mathematik Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf Weil-Vermutung (DE-588)4189446-7 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Garbentheorie (DE-588)4155956-3 gnd rswk-swf Weil-Vermutung (DE-588)4189446-7 s Kohomologietheorie (DE-588)4164610-1 s Garbentheorie (DE-588)4155956-3 s 1\p DE-604 Homologietheorie (DE-588)4141714-8 s 2\p DE-604 Weissauer, Rainer 1954- Sonstige (DE-588)1051766699 oth https://doi.org/10.1007/978-3-662-04576-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kiehl, Reinhardt Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform Mathematics Geometry, algebraic Group theory K-theory Algebraic Geometry Group Theory and Generalizations K-Theory Mathematik Kohomologietheorie (DE-588)4164610-1 gnd Weil-Vermutung (DE-588)4189446-7 gnd Homologietheorie (DE-588)4141714-8 gnd Garbentheorie (DE-588)4155956-3 gnd |
subject_GND | (DE-588)4164610-1 (DE-588)4189446-7 (DE-588)4141714-8 (DE-588)4155956-3 |
title | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform |
title_auth | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform |
title_exact_search | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform |
title_full | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform by Reinhardt Kiehl, Rainer Weissauer |
title_fullStr | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform by Reinhardt Kiehl, Rainer Weissauer |
title_full_unstemmed | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform by Reinhardt Kiehl, Rainer Weissauer |
title_short | Weil Conjectures, Perverse Sheaves and l'adic Fourier Transform |
title_sort | weil conjectures perverse sheaves and l adic fourier transform |
topic | Mathematics Geometry, algebraic Group theory K-theory Algebraic Geometry Group Theory and Generalizations K-Theory Mathematik Kohomologietheorie (DE-588)4164610-1 gnd Weil-Vermutung (DE-588)4189446-7 gnd Homologietheorie (DE-588)4141714-8 gnd Garbentheorie (DE-588)4155956-3 gnd |
topic_facet | Mathematics Geometry, algebraic Group theory K-theory Algebraic Geometry Group Theory and Generalizations K-Theory Mathematik Kohomologietheorie Weil-Vermutung Homologietheorie Garbentheorie |
url | https://doi.org/10.1007/978-3-662-04576-3 |
work_keys_str_mv | AT kiehlreinhardt weilconjecturesperversesheavesandladicfouriertransform AT weissauerrainer weilconjecturesperversesheavesandladicfouriertransform |