Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems: Theory, Algorithm, and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Schriftenreihe: | Lecture Notes in Computational Science and Engineering
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with the adaptive numerical solution of parabolic partial differential equations (PDEs) arising in many branches of applications. It illustrates the interlocking of numerical analysis, the design of an algorithm and the solution of practical problems. In particular, a combination of Rosenbrock-type one-step methods and multilevel finite elements is analysed. Implementation and efficiency issues are discussed. Special emphasis is put on the solution of real-life applications that arise in today's chemical industry, semiconductor-device fabrication and health care. The book is intended for graduate students and researchers who are either interested in the theoretical understanding of instationary PDE solvers or who want to develop computer codes for solving complex PDEs |
Beschreibung: | 1 Online-Ressource (XII, 162 p) |
ISBN: | 9783662044841 9783642087479 |
ISSN: | 1439-7358 |
DOI: | 10.1007/978-3-662-04484-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423309 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783662044841 |c Online |9 978-3-662-04484-1 | ||
020 | |a 9783642087479 |c Print |9 978-3-642-08747-9 | ||
024 | 7 | |a 10.1007/978-3-662-04484-1 |2 doi | |
035 | |a (OCoLC)864065253 | ||
035 | |a (DE-599)BVBBV042423309 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lang, Jens |e Verfasser |4 aut | |
245 | 1 | 0 | |a Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems |b Theory, Algorithm, and Applications |c by Jens Lang |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (XII, 162 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Computational Science and Engineering |v 16 |x 1439-7358 | |
500 | |a This book deals with the adaptive numerical solution of parabolic partial differential equations (PDEs) arising in many branches of applications. It illustrates the interlocking of numerical analysis, the design of an algorithm and the solution of practical problems. In particular, a combination of Rosenbrock-type one-step methods and multilevel finite elements is analysed. Implementation and efficiency issues are discussed. Special emphasis is put on the solution of real-life applications that arise in today's chemical industry, semiconductor-device fabrication and health care. The book is intended for graduate students and researchers who are either interested in the theoretical understanding of instationary PDE solvers or who want to develop computer codes for solving complex PDEs | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04484-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858726 |
Datensatz im Suchindex
_version_ | 1804153098879369216 |
---|---|
any_adam_object | |
author | Lang, Jens |
author_facet | Lang, Jens |
author_role | aut |
author_sort | Lang, Jens |
author_variant | j l jl |
building | Verbundindex |
bvnumber | BV042423309 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864065253 (DE-599)BVBBV042423309 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04484-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02239nmm a2200433zcb4500</leader><controlfield tag="001">BV042423309</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662044841</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04484-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642087479</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08747-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04484-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864065253</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423309</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Jens</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems</subfield><subfield code="b">Theory, Algorithm, and Applications</subfield><subfield code="c">by Jens Lang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 162 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">16</subfield><subfield code="x">1439-7358</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the adaptive numerical solution of parabolic partial differential equations (PDEs) arising in many branches of applications. It illustrates the interlocking of numerical analysis, the design of an algorithm and the solution of practical problems. In particular, a combination of Rosenbrock-type one-step methods and multilevel finite elements is analysed. Implementation and efficiency issues are discussed. Special emphasis is put on the solution of real-life applications that arise in today's chemical industry, semiconductor-device fabrication and health care. The book is intended for graduate students and researchers who are either interested in the theoretical understanding of instationary PDE solvers or who want to develop computer codes for solving complex PDEs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04484-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858726</subfield></datafield></record></collection> |
id | DE-604.BV042423309 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662044841 9783642087479 |
issn | 1439-7358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858726 |
oclc_num | 864065253 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 162 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Computational Science and Engineering |
spelling | Lang, Jens Verfasser aut Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications by Jens Lang Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (XII, 162 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computational Science and Engineering 16 1439-7358 This book deals with the adaptive numerical solution of parabolic partial differential equations (PDEs) arising in many branches of applications. It illustrates the interlocking of numerical analysis, the design of an algorithm and the solution of practical problems. In particular, a combination of Rosenbrock-type one-step methods and multilevel finite elements is analysed. Implementation and efficiency issues are discussed. Special emphasis is put on the solution of real-life applications that arise in today's chemical industry, semiconductor-device fabrication and health care. The book is intended for graduate students and researchers who are either interested in the theoretical understanding of instationary PDE solvers or who want to develop computer codes for solving complex PDEs Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik https://doi.org/10.1007/978-3-662-04484-1 Verlag Volltext |
spellingShingle | Lang, Jens Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik |
title | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications |
title_auth | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications |
title_exact_search | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications |
title_full | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications by Jens Lang |
title_fullStr | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications by Jens Lang |
title_full_unstemmed | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems Theory, Algorithm, and Applications by Jens Lang |
title_short | Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems |
title_sort | adaptive multilevel solution of nonlinear parabolic pde systems theory algorithm and applications |
title_sub | Theory, Algorithm, and Applications |
topic | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik |
url | https://doi.org/10.1007/978-3-662-04484-1 |
work_keys_str_mv | AT langjens adaptivemultilevelsolutionofnonlinearparabolicpdesystemstheoryalgorithmandapplications |