Numerical Bifurcation Analysis for Reaction-Diffusion Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer Series in Computational Mathematics
28 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions |
Beschreibung: | 1 Online-Ressource (XIV, 414 p) |
ISBN: | 9783662041772 9783642086694 |
ISSN: | 0179-3632 |
DOI: | 10.1007/978-3-662-04177-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423297 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662041772 |c Online |9 978-3-662-04177-2 | ||
020 | |a 9783642086694 |c Print |9 978-3-642-08669-4 | ||
024 | 7 | |a 10.1007/978-3-662-04177-2 |2 doi | |
035 | |a (OCoLC)1184499529 | ||
035 | |a (DE-599)BVBBV042423297 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mei, Zhen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Bifurcation Analysis for Reaction-Diffusion Equations |c by Zhen Mei |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XIV, 414 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Mathematics |v 28 |x 0179-3632 | |
500 | |a Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |D s |
689 | 0 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04177-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858714 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098857349120 |
---|---|
any_adam_object | |
author | Mei, Zhen |
author_facet | Mei, Zhen |
author_role | aut |
author_sort | Mei, Zhen |
author_variant | z m zm |
building | Verbundindex |
bvnumber | BV042423297 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184499529 (DE-599)BVBBV042423297 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-04177-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03652nmm a2200541zcb4500</leader><controlfield tag="001">BV042423297</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662041772</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04177-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642086694</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08669-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04177-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184499529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423297</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Zhen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Bifurcation Analysis for Reaction-Diffusion Equations</subfield><subfield code="c">by Zhen Mei</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 414 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">28</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04177-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858714</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423297 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662041772 9783642086694 |
issn | 0179-3632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858714 |
oclc_num | 1184499529 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 414 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Mathematics |
spelling | Mei, Zhen Verfasser aut Numerical Bifurcation Analysis for Reaction-Diffusion Equations by Zhen Mei Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XIV, 414 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Computational Mathematics 28 0179-3632 Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions Mathematics Global analysis (Mathematics) Numerical analysis Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Reaktions-Diffusionsgleichung (DE-588)4323967-5 s Verzweigung Mathematik (DE-588)4078889-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 https://doi.org/10.1007/978-3-662-04177-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mei, Zhen Numerical Bifurcation Analysis for Reaction-Diffusion Equations Mathematics Global analysis (Mathematics) Numerical analysis Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4323967-5 (DE-588)4078889-1 |
title | Numerical Bifurcation Analysis for Reaction-Diffusion Equations |
title_auth | Numerical Bifurcation Analysis for Reaction-Diffusion Equations |
title_exact_search | Numerical Bifurcation Analysis for Reaction-Diffusion Equations |
title_full | Numerical Bifurcation Analysis for Reaction-Diffusion Equations by Zhen Mei |
title_fullStr | Numerical Bifurcation Analysis for Reaction-Diffusion Equations by Zhen Mei |
title_full_unstemmed | Numerical Bifurcation Analysis for Reaction-Diffusion Equations by Zhen Mei |
title_short | Numerical Bifurcation Analysis for Reaction-Diffusion Equations |
title_sort | numerical bifurcation analysis for reaction diffusion equations |
topic | Mathematics Global analysis (Mathematics) Numerical analysis Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Mathematik Numerisches Verfahren Reaktions-Diffusionsgleichung Verzweigung Mathematik |
url | https://doi.org/10.1007/978-3-662-04177-2 |
work_keys_str_mv | AT meizhen numericalbifurcationanalysisforreactiondiffusionequations |