Supersymmetry and Equivariant de Rham Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer
1999
|
Schriftenreihe: | Mathematics past and present
2 |
Schlagworte: | |
Online-Zugang: | DE-20 Volltext |
Beschreibung: | Equivariant cohomology in the framework of smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Brüning and V. M. Guillemin. The point of departure are two relatively short but very remarkable papers by Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie". These papers are reproduced here, together with a scholarly introduction to the subject from a modern point of view, written by two of the leading experts in the field. This "introduction", however, turns out to be a textbook of its own presenting the first full treatment of equivariant cohomology from the de Rahm theoretic perspective. The well established topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects (like symplectic geometry, Lie theory, dynamical systems, and mathematical physics), leading up to the localization theorems and recent results on the ring structure of the equivariant cohomology |
Beschreibung: | 1 Online-Ressource (xxiii, 228 Seiten) |
ISBN: | 9783662039922 |
DOI: | 10.1007/978-3-662-03992-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423290 | ||
003 | DE-604 | ||
005 | 20241105 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783662039922 |c Online |9 978-3-662-03992-2 | ||
024 | 7 | |a 10.1007/978-3-662-03992-2 |2 doi | |
035 | |a (OCoLC)863938307 | ||
035 | |a (DE-599)BVBBV042423290 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-20 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Guillemin, Victor |d 1937- |e Verfasser |0 (DE-588)12110172X |4 aut | |
245 | 1 | 0 | |a Supersymmetry and Equivariant de Rham Theory |c bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning |
264 | 1 | |a Berlin, Heidelberg |b Springer |c 1999 | |
300 | |a 1 Online-Ressource (xxiii, 228 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics past and present |v 2 | |
500 | |a Equivariant cohomology in the framework of smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Brüning and V. M. Guillemin. The point of departure are two relatively short but very remarkable papers by Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie". These papers are reproduced here, together with a scholarly introduction to the subject from a modern point of view, written by two of the leading experts in the field. This "introduction", however, turns out to be a textbook of its own presenting the first full treatment of equivariant cohomology from the de Rahm theoretic perspective. The well established topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects (like symplectic geometry, Lie theory, dynamical systems, and mathematical physics), leading up to the localization theorems and recent results on the ring structure of the equivariant cohomology | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Supersymmetrie |0 (DE-588)4128574-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a DeRham-Theorie |0 (DE-588)4494379-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Äquivariante Kohomologietheorie |0 (DE-588)4288548-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Äquivariante Kohomologietheorie |0 (DE-588)4288548-6 |D s |
689 | 0 | 1 | |a DeRham-Theorie |0 (DE-588)4494379-9 |D s |
689 | 0 | 2 | |a Supersymmetrie |0 (DE-588)4128574-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sternberg, Shlomo |d 1936- |e Sonstige |0 (DE-588)121101762 |4 oth | |
700 | 1 | |a Brüning, Jochen |d 1947- |e Sonstige |0 (DE-588)1012100693 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-08433-1 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03992-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858707 | |
966 | e | |u https://doi.org/10.1007/978-3-662-03992-2 |l DE-20 |p ZDB-2-SMA |q UBW_Einzelkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1814872479276990464 |
---|---|
adam_text | |
any_adam_object | |
author | Guillemin, Victor 1937- |
author_GND | (DE-588)12110172X (DE-588)121101762 (DE-588)1012100693 |
author_facet | Guillemin, Victor 1937- |
author_role | aut |
author_sort | Guillemin, Victor 1937- |
author_variant | v g vg |
building | Verbundindex |
bvnumber | BV042423290 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863938307 (DE-599)BVBBV042423290 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03992-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042423290</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241105</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662039922</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03992-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03992-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863938307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423290</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guillemin, Victor</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12110172X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Supersymmetry and Equivariant de Rham Theory</subfield><subfield code="c">bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 228 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics past and present</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Equivariant cohomology in the framework of smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Brüning and V. M. Guillemin. The point of departure are two relatively short but very remarkable papers by Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie". These papers are reproduced here, together with a scholarly introduction to the subject from a modern point of view, written by two of the leading experts in the field. This "introduction", however, turns out to be a textbook of its own presenting the first full treatment of equivariant cohomology from the de Rahm theoretic perspective. The well established topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects (like symplectic geometry, Lie theory, dynamical systems, and mathematical physics), leading up to the localization theorems and recent results on the ring structure of the equivariant cohomology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supersymmetrie</subfield><subfield code="0">(DE-588)4128574-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">DeRham-Theorie</subfield><subfield code="0">(DE-588)4494379-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Äquivariante Kohomologietheorie</subfield><subfield code="0">(DE-588)4288548-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Äquivariante Kohomologietheorie</subfield><subfield code="0">(DE-588)4288548-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">DeRham-Theorie</subfield><subfield code="0">(DE-588)4494379-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Supersymmetrie</subfield><subfield code="0">(DE-588)4128574-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sternberg, Shlomo</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121101762</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brüning, Jochen</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1012100693</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-08433-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03992-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858707</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-03992-2</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042423290 |
illustrated | Not Illustrated |
indexdate | 2024-11-05T09:01:10Z |
institution | BVB |
isbn | 9783662039922 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858707 |
oclc_num | 863938307 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-20 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-20 |
physical | 1 Online-Ressource (xxiii, 228 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive ZDB-2-SMA UBW_Einzelkauf |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series2 | Mathematics past and present |
spelling | Guillemin, Victor 1937- Verfasser (DE-588)12110172X aut Supersymmetry and Equivariant de Rham Theory bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning Berlin, Heidelberg Springer 1999 1 Online-Ressource (xxiii, 228 Seiten) txt rdacontent c rdamedia cr rdacarrier Mathematics past and present 2 Equivariant cohomology in the framework of smooth manifolds is the subject of this book which is part of a collection of volumes edited by J. Brüning and V. M. Guillemin. The point of departure are two relatively short but very remarkable papers by Henry Cartan, published in 1950 in the Proceedings of the "Colloque de Topologie". These papers are reproduced here, together with a scholarly introduction to the subject from a modern point of view, written by two of the leading experts in the field. This "introduction", however, turns out to be a textbook of its own presenting the first full treatment of equivariant cohomology from the de Rahm theoretic perspective. The well established topological approach is linked with the differential form aspect through the equivariant de Rahm theorem. The systematic use of supersymmetry simplifies considerably the ensuing development of the basic technical tools which are then applied to a variety of subjects (like symplectic geometry, Lie theory, dynamical systems, and mathematical physics), leading up to the localization theorems and recent results on the ring structure of the equivariant cohomology Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Supersymmetrie (DE-588)4128574-8 gnd rswk-swf DeRham-Theorie (DE-588)4494379-9 gnd rswk-swf Äquivariante Kohomologietheorie (DE-588)4288548-6 gnd rswk-swf Äquivariante Kohomologietheorie (DE-588)4288548-6 s DeRham-Theorie (DE-588)4494379-9 s Supersymmetrie (DE-588)4128574-8 s 1\p DE-604 Sternberg, Shlomo 1936- Sonstige (DE-588)121101762 oth Brüning, Jochen 1947- Sonstige (DE-588)1012100693 oth Erscheint auch als Druck-Ausgabe 978-3-642-08433-1 https://doi.org/10.1007/978-3-662-03992-2 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guillemin, Victor 1937- Supersymmetry and Equivariant de Rham Theory Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Supersymmetrie (DE-588)4128574-8 gnd DeRham-Theorie (DE-588)4494379-9 gnd Äquivariante Kohomologietheorie (DE-588)4288548-6 gnd |
subject_GND | (DE-588)4128574-8 (DE-588)4494379-9 (DE-588)4288548-6 |
title | Supersymmetry and Equivariant de Rham Theory |
title_auth | Supersymmetry and Equivariant de Rham Theory |
title_exact_search | Supersymmetry and Equivariant de Rham Theory |
title_full | Supersymmetry and Equivariant de Rham Theory bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning |
title_fullStr | Supersymmetry and Equivariant de Rham Theory bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning |
title_full_unstemmed | Supersymmetry and Equivariant de Rham Theory bVictor W. Guillemin, Shlomo Sternberg, Jochen Brüning |
title_short | Supersymmetry and Equivariant de Rham Theory |
title_sort | supersymmetry and equivariant de rham theory |
topic | Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Supersymmetrie (DE-588)4128574-8 gnd DeRham-Theorie (DE-588)4494379-9 gnd Äquivariante Kohomologietheorie (DE-588)4288548-6 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Theoretical, Mathematical and Computational Physics Mathematik Supersymmetrie DeRham-Theorie Äquivariante Kohomologietheorie |
url | https://doi.org/10.1007/978-3-662-03992-2 |
work_keys_str_mv | AT guilleminvictor supersymmetryandequivariantderhamtheory AT sternbergshlomo supersymmetryandequivariantderhamtheory AT bruningjochen supersymmetryandequivariantderhamtheory |