Geometry V: Minimal Surfaces
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1997
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
90 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics |
Beschreibung: | 1 Online-Ressource (IX, 272 p) |
ISBN: | 9783662034842 9783642082252 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-03484-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423261 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783662034842 |c Online |9 978-3-662-03484-2 | ||
020 | |a 9783642082252 |c Print |9 978-3-642-08225-2 | ||
024 | 7 | |a 10.1007/978-3-662-03484-2 |2 doi | |
035 | |a (OCoLC)863963196 | ||
035 | |a (DE-599)BVBBV042423261 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Osserman, R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry V |b Minimal Surfaces |c edited by R. Osserman |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1997 | |
300 | |a 1 Online-Ressource (IX, 272 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 90 |x 0938-0396 | |
500 | |a Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03484-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858678 |
Datensatz im Suchindex
_version_ | 1804153098778705920 |
---|---|
any_adam_object | |
author | Osserman, R. |
author_facet | Osserman, R. |
author_role | aut |
author_sort | Osserman, R. |
author_variant | r o ro |
building | Verbundindex |
bvnumber | BV042423261 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863963196 (DE-599)BVBBV042423261 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03484-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02587nmm a2200481zcb4500</leader><controlfield tag="001">BV042423261</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662034842</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03484-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642082252</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08225-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03484-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863963196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423261</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Osserman, R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry V</subfield><subfield code="b">Minimal Surfaces</subfield><subfield code="c">edited by R. Osserman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 272 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">90</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03484-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858678</subfield></datafield></record></collection> |
id | DE-604.BV042423261 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662034842 9783642082252 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858678 |
oclc_num | 863963196 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 272 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Osserman, R. Verfasser aut Geometry V Minimal Surfaces edited by R. Osserman Berlin, Heidelberg Springer Berlin Heidelberg 1997 1 Online-Ressource (IX, 272 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 90 0938-0396 Osserman (Ed.) Geometry V Minimal Surfaces The theory of minimal surfaces has expanded in many directions over the past decade or two. This volume gathers in one place an overview of some of the most exciting developments, presented by five of the leading contributors to those developments. Hirotaka Fujimoto, who obtained the definitive results on the Gauss map of minimal surfaces, reports on Nevanlinna Theory and Minimal Surfaces. Stefan Hildebrandt provides an up-to-date account of the Plateau problem and related boundary-value problems. David Hoffman and Hermann Karcher describe the wealth of results on embedded minimal surfaces from the past decade, starting with Costa's surface and the subsequent Hoffman-Meeks examples. Finally, Leon Simon covers the PDE aspect of minimal surfaces, with a survey of known results both in the classical case of surfaces and in the higher dimensional case. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Differential Geometry Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik https://doi.org/10.1007/978-3-662-03484-2 Verlag Volltext |
spellingShingle | Osserman, R. Geometry V Minimal Surfaces Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Differential Geometry Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik |
title | Geometry V Minimal Surfaces |
title_auth | Geometry V Minimal Surfaces |
title_exact_search | Geometry V Minimal Surfaces |
title_full | Geometry V Minimal Surfaces edited by R. Osserman |
title_fullStr | Geometry V Minimal Surfaces edited by R. Osserman |
title_full_unstemmed | Geometry V Minimal Surfaces edited by R. Osserman |
title_short | Geometry V |
title_sort | geometry v minimal surfaces |
title_sub | Minimal Surfaces |
topic | Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Differential Geometry Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Systems theory Global differential geometry Mathematical optimization Differential Geometry Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Mathematik |
url | https://doi.org/10.1007/978-3-662-03484-2 |
work_keys_str_mv | AT ossermanr geometryvminimalsurfaces |