Complex Analysis I: Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1997
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
85 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The first part of the volume contains a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications. It includes the fundamental notions, methods and results on the growth of entire functions and the distribution of their zeros, the Rolf Nevanlinna theory of distribution of values of meromorphic functions including the inverse problem, the theory of completely regular growth, the concept of limit sets for entire and subharmonic functions. The authors describe the interpolation by entire functions, to entire and meromorphic solutions of ordinary differential equations, to the Riemann boundary problem with an infinite index and to the arithmetic of the convolution semigroup of probability distributions. Polyanalytic functions form one of the most natural generalizations of analytic functions and are described in Part II. They emerged for the first time in plane elasticity theory where they found important applications (due to Kolossof, Mushelishvili etc.). This book contains a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behavour, value distributions, degeneration, uniqueness etc.). Polyanalytic functions have many points of contact with such fields of analysis as polyharmonic functions, Nevanlinna Theory, meromorphic curves, cluster set theory, functions of several complex variables etc |
Beschreibung: | 1 Online-Ressource (IX, 261 p) |
ISBN: | 9783662033968 9783642081279 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-03396-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423258 | ||
003 | DE-604 | ||
005 | 20160524 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783662033968 |c Online |9 978-3-662-03396-8 | ||
020 | |a 9783642081279 |c Print |9 978-3-642-08127-9 | ||
024 | 7 | |a 10.1007/978-3-662-03396-8 |2 doi | |
035 | |a (OCoLC)859350519 | ||
035 | |a (DE-599)BVBBV042423258 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gonchar, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Analysis I |b Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations |c edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1997 | |
300 | |a 1 Online-Ressource (IX, 261 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 85 |x 0938-0396 | |
500 | |a The first part of the volume contains a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications. It includes the fundamental notions, methods and results on the growth of entire functions and the distribution of their zeros, the Rolf Nevanlinna theory of distribution of values of meromorphic functions including the inverse problem, the theory of completely regular growth, the concept of limit sets for entire and subharmonic functions. The authors describe the interpolation by entire functions, to entire and meromorphic solutions of ordinary differential equations, to the Riemann boundary problem with an infinite index and to the arithmetic of the convolution semigroup of probability distributions. Polyanalytic functions form one of the most natural generalizations of analytic functions and are described in Part II. They emerged for the first time in plane elasticity theory where they found important applications (due to Kolossof, Mushelishvili etc.). This book contains a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behavour, value distributions, degeneration, uniqueness etc.). Polyanalytic functions have many points of contact with such fields of analysis as polyharmonic functions, Nevanlinna Theory, meromorphic curves, cluster set theory, functions of several complex variables etc | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Havin, V. P. |e Sonstige |4 oth | |
700 | 1 | |a Nikolski, Nikolai K. |d 1940- |e Sonstige |0 (DE-588)12430382X |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03396-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858675 |
Datensatz im Suchindex
_version_ | 1804153098762977280 |
---|---|
any_adam_object | |
author | Gonchar, A. A. |
author_GND | (DE-588)12430382X |
author_facet | Gonchar, A. A. |
author_role | aut |
author_sort | Gonchar, A. A. |
author_variant | a a g aa aag |
building | Verbundindex |
bvnumber | BV042423258 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)859350519 (DE-599)BVBBV042423258 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03396-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02973nmm a2200433zcb4500</leader><controlfield tag="001">BV042423258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160524 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662033968</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03396-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081279</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08127-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03396-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859350519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonchar, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis I</subfield><subfield code="b">Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations</subfield><subfield code="c">edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 261 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">85</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The first part of the volume contains a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications. It includes the fundamental notions, methods and results on the growth of entire functions and the distribution of their zeros, the Rolf Nevanlinna theory of distribution of values of meromorphic functions including the inverse problem, the theory of completely regular growth, the concept of limit sets for entire and subharmonic functions. The authors describe the interpolation by entire functions, to entire and meromorphic solutions of ordinary differential equations, to the Riemann boundary problem with an infinite index and to the arithmetic of the convolution semigroup of probability distributions. Polyanalytic functions form one of the most natural generalizations of analytic functions and are described in Part II. They emerged for the first time in plane elasticity theory where they found important applications (due to Kolossof, Mushelishvili etc.). This book contains a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behavour, value distributions, degeneration, uniqueness etc.). Polyanalytic functions have many points of contact with such fields of analysis as polyharmonic functions, Nevanlinna Theory, meromorphic curves, cluster set theory, functions of several complex variables etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Havin, V. P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikolski, Nikolai K.</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12430382X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03396-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858675</subfield></datafield></record></collection> |
id | DE-604.BV042423258 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662033968 9783642081279 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858675 |
oclc_num | 859350519 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 261 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Gonchar, A. A. Verfasser aut Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski Berlin, Heidelberg Springer Berlin Heidelberg 1997 1 Online-Ressource (IX, 261 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 85 0938-0396 The first part of the volume contains a comprehensive description of the theory of entire and meromorphic functions of one complex variable and its applications. It includes the fundamental notions, methods and results on the growth of entire functions and the distribution of their zeros, the Rolf Nevanlinna theory of distribution of values of meromorphic functions including the inverse problem, the theory of completely regular growth, the concept of limit sets for entire and subharmonic functions. The authors describe the interpolation by entire functions, to entire and meromorphic solutions of ordinary differential equations, to the Riemann boundary problem with an infinite index and to the arithmetic of the convolution semigroup of probability distributions. Polyanalytic functions form one of the most natural generalizations of analytic functions and are described in Part II. They emerged for the first time in plane elasticity theory where they found important applications (due to Kolossof, Mushelishvili etc.). This book contains a detailed review of recent investigations concerning the function-theoretical pecularities of polyanalytic functions (boundary behavour, value distributions, degeneration, uniqueness etc.). Polyanalytic functions have many points of contact with such fields of analysis as polyharmonic functions, Nevanlinna Theory, meromorphic curves, cluster set theory, functions of several complex variables etc Mathematics Global analysis (Mathematics) Analysis Mathematik Havin, V. P. Sonstige oth Nikolski, Nikolai K. 1940- Sonstige (DE-588)12430382X oth https://doi.org/10.1007/978-3-662-03396-8 Verlag Volltext |
spellingShingle | Gonchar, A. A. Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations Mathematics Global analysis (Mathematics) Analysis Mathematik |
title | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations |
title_auth | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations |
title_exact_search | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations |
title_full | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski |
title_fullStr | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski |
title_full_unstemmed | Complex Analysis I Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations edited by A. A. Gonchar, V. P. Havin, N. K. Nikolski |
title_short | Complex Analysis I |
title_sort | complex analysis i entire and meromorphic functions polyanalytic functions and their generalizations |
title_sub | Entire and Meromorphic Functions Polyanalytic Functions and Their Generalizations |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik |
url | https://doi.org/10.1007/978-3-662-03396-8 |
work_keys_str_mv | AT goncharaa complexanalysisientireandmeromorphicfunctionspolyanalyticfunctionsandtheirgeneralizations AT havinvp complexanalysisientireandmeromorphicfunctionspolyanalyticfunctionsandtheirgeneralizations AT nikolskinikolaik complexanalysisientireandmeromorphicfunctionspolyanalyticfunctionsandtheirgeneralizations |