Methods of Homological Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work |
Beschreibung: | 1 Online-Ressource (XVIII, 374 p) |
ISBN: | 9783662032206 9783662032220 |
DOI: | 10.1007/978-3-662-03220-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423246 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783662032206 |c Online |9 978-3-662-03220-6 | ||
020 | |a 9783662032220 |c Print |9 978-3-662-03222-0 | ||
024 | 7 | |a 10.1007/978-3-662-03220-6 |2 doi | |
035 | |a (OCoLC)864047671 | ||
035 | |a (DE-599)BVBBV042423246 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.66 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gelfand, Sergei I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Methods of Homological Algebra |c by Sergei I. Gelfand, Yuri I. Manin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (XVIII, 374 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a K-theory | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Homologische Algebra |0 (DE-588)4160598-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homologische Algebra |0 (DE-588)4160598-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Manin, Yuri I. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03220-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858663 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098752491520 |
---|---|
any_adam_object | |
author | Gelfand, Sergei I. |
author_facet | Gelfand, Sergei I. |
author_role | aut |
author_sort | Gelfand, Sergei I. |
author_variant | s i g si sig |
building | Verbundindex |
bvnumber | BV042423246 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864047671 (DE-599)BVBBV042423246 |
dewey-full | 512.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.66 |
dewey-search | 512.66 |
dewey-sort | 3512.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03220-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02283nmm a2200457zc 4500</leader><controlfield tag="001">BV042423246</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662032206</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03220-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662032220</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-03222-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03220-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864047671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423246</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gelfand, Sergei I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods of Homological Algebra</subfield><subfield code="c">by Sergei I. Gelfand, Yuri I. Manin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 374 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homologische Algebra</subfield><subfield code="0">(DE-588)4160598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manin, Yuri I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03220-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858663</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423246 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662032206 9783662032220 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858663 |
oclc_num | 864047671 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 374 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Gelfand, Sergei I. Verfasser aut Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (XVIII, 374 p) txt rdacontent c rdamedia cr rdacarrier Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work Mathematics K-theory K-Theory Mathematik Homologische Algebra (DE-588)4160598-6 gnd rswk-swf Homologische Algebra (DE-588)4160598-6 s 1\p DE-604 Manin, Yuri I. Sonstige oth https://doi.org/10.1007/978-3-662-03220-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gelfand, Sergei I. Methods of Homological Algebra Mathematics K-theory K-Theory Mathematik Homologische Algebra (DE-588)4160598-6 gnd |
subject_GND | (DE-588)4160598-6 |
title | Methods of Homological Algebra |
title_auth | Methods of Homological Algebra |
title_exact_search | Methods of Homological Algebra |
title_full | Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin |
title_fullStr | Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin |
title_full_unstemmed | Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin |
title_short | Methods of Homological Algebra |
title_sort | methods of homological algebra |
topic | Mathematics K-theory K-Theory Mathematik Homologische Algebra (DE-588)4160598-6 gnd |
topic_facet | Mathematics K-theory K-Theory Mathematik Homologische Algebra |
url | https://doi.org/10.1007/978-3-662-03220-6 |
work_keys_str_mv | AT gelfandsergeii methodsofhomologicalalgebra AT maninyurii methodsofhomologicalalgebra |