Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Ausgabe: | Second, Revised and Substantially Expanded Edition |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics
34 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field |
Beschreibung: | 1 Online-Ressource (XVI, 272 p) |
ISBN: | 9783662032121 9783662032145 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-662-03212-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423245 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783662032121 |c Online |9 978-3-662-03212-1 | ||
020 | |a 9783662032145 |c Print |9 978-3-662-03214-5 | ||
024 | 7 | |a 10.1007/978-3-662-03212-1 |2 doi | |
035 | |a (OCoLC)864054963 | ||
035 | |a (DE-599)BVBBV042423245 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Struwe, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational Methods |b Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems |c by Michael Struwe |
250 | |a Second, Revised and Substantially Expanded Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (XVI, 272 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics |v 34 |x 0071-1136 | |
500 | |a Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | 1 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 1 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 2 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03212-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858662 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098748297216 |
---|---|
any_adam_object | |
author | Struwe, Michael |
author_facet | Struwe, Michael |
author_role | aut |
author_sort | Struwe, Michael |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV042423245 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864054963 (DE-599)BVBBV042423245 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03212-1 |
edition | Second, Revised and Substantially Expanded Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03553nmm a2200661zcb4500</leader><controlfield tag="001">BV042423245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662032121</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03212-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662032145</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-03214-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03212-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864054963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Struwe, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational Methods</subfield><subfield code="b">Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems</subfield><subfield code="c">by Michael Struwe</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second, Revised and Substantially Expanded Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 272 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">34</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03212-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858662</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423245 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662032121 9783662032145 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858662 |
oclc_num | 864054963 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 272 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics |
spelling | Struwe, Michael Verfasser aut Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems by Michael Struwe Second, Revised and Substantially Expanded Edition Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (XVI, 272 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics 34 0071-1136 Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Variationsrechnung (DE-588)4062355-5 s Nichtlineare Differentialgleichung (DE-588)4205536-2 s 1\p DE-604 Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 s 2\p DE-604 Hamiltonsches System (DE-588)4139943-2 s 3\p DE-604 https://doi.org/10.1007/978-3-662-03212-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Struwe, Michael Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Variationsrechnung (DE-588)4062355-5 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4128900-6 (DE-588)4062355-5 (DE-588)4205536-2 (DE-588)4139943-2 |
title | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems |
title_auth | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems |
title_exact_search | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems |
title_full | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems by Michael Struwe |
title_fullStr | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems by Michael Struwe |
title_full_unstemmed | Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems by Michael Struwe |
title_short | Variational Methods |
title_sort | variational methods applications to nonlinear partial differential equations and hamiltonian systems |
title_sub | Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems |
topic | Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Variationsrechnung (DE-588)4062355-5 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Nichtlineare partielle Differentialgleichung Variationsrechnung Nichtlineare Differentialgleichung Hamiltonsches System |
url | https://doi.org/10.1007/978-3-662-03212-1 |
work_keys_str_mv | AT struwemichael variationalmethodsapplicationstononlinearpartialdifferentialequationsandhamiltoniansystems |