Stochastic Differential Equations: An Introduction with Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Ausgabe: | Fourth Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this edition I have added some material which is particularlly useful for the applications, namely the martingale representation theorem (Chapter IV), the variational inequalities associated to optimal stopping problems (Chapter X) and stochastic control with terminal conditions (Chapter XI). In addition solutions and extra hints to some of the exercises are now included. Moreover, the proof and the discussion of the Girsanov theorem have been changed in order to make it more easy to apply, e.g. in economics. And the presentation in general has been corrected and revised throughout the text, in order to make the book better and more useful. During this work I have benefitted from valuable comments from several per sons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge Holden, Yaozhong Hu, Tom Lindstrom, Trygve Nilsen, Paulo Ruffino, Isaac Saias, Clint Scovel, Jan Uboe, Suleyman Ustunel, Qinghua Zhang, Tusheng Zhang and Vic tor Daniel Zurkowski. I am grateful to them all for their help. My special thanks go to Hakon Nyhus, who carefully read large portions of the manuscript and gave me a long list of improvements, as well as many other useful suggestions. Finally I wish to express my gratitude to Tove Moller and Dina Haraldsson, who typed the manuscript with impressive proficiency |
Beschreibung: | 1 Online-Ressource (XVI, 271 p) |
ISBN: | 9783662031858 9783540602439 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-662-03185-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423243 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783662031858 |c Online |9 978-3-662-03185-8 | ||
020 | |a 9783540602439 |c Print |9 978-3-540-60243-9 | ||
024 | 7 | |a 10.1007/978-3-662-03185-8 |2 doi | |
035 | |a (OCoLC)863960322 | ||
035 | |a (DE-599)BVBBV042423243 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Øksendal, Bernt |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Differential Equations |b An Introduction with Applications |c by Bernt Øksendal |
250 | |a Fourth Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (XVI, 271 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a In this edition I have added some material which is particularlly useful for the applications, namely the martingale representation theorem (Chapter IV), the variational inequalities associated to optimal stopping problems (Chapter X) and stochastic control with terminal conditions (Chapter XI). In addition solutions and extra hints to some of the exercises are now included. Moreover, the proof and the discussion of the Girsanov theorem have been changed in order to make it more easy to apply, e.g. in economics. And the presentation in general has been corrected and revised throughout the text, in order to make the book better and more useful. During this work I have benefitted from valuable comments from several per sons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge Holden, Yaozhong Hu, Tom Lindstrom, Trygve Nilsen, Paulo Ruffino, Isaac Saias, Clint Scovel, Jan Uboe, Suleyman Ustunel, Qinghua Zhang, Tusheng Zhang and Vic tor Daniel Zurkowski. I am grateful to them all for their help. My special thanks go to Hakon Nyhus, who carefully read large portions of the manuscript and gave me a long list of improvements, as well as many other useful suggestions. Finally I wish to express my gratitude to Tove Moller and Dina Haraldsson, who typed the manuscript with impressive proficiency | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03185-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858660 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098744102912 |
---|---|
any_adam_object | |
author | Øksendal, Bernt |
author_facet | Øksendal, Bernt |
author_role | aut |
author_sort | Øksendal, Bernt |
author_variant | b ø bø |
building | Verbundindex |
bvnumber | BV042423243 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863960322 (DE-599)BVBBV042423243 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03185-8 |
edition | Fourth Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03113nmm a2200505zc 4500</leader><controlfield tag="001">BV042423243</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662031858</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03185-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540602439</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-60243-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03185-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863960322</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423243</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Øksendal, Bernt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Differential Equations</subfield><subfield code="b">An Introduction with Applications</subfield><subfield code="c">by Bernt Øksendal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 271 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this edition I have added some material which is particularlly useful for the applications, namely the martingale representation theorem (Chapter IV), the variational inequalities associated to optimal stopping problems (Chapter X) and stochastic control with terminal conditions (Chapter XI). In addition solutions and extra hints to some of the exercises are now included. Moreover, the proof and the discussion of the Girsanov theorem have been changed in order to make it more easy to apply, e.g. in economics. And the presentation in general has been corrected and revised throughout the text, in order to make the book better and more useful. During this work I have benefitted from valuable comments from several per sons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge Holden, Yaozhong Hu, Tom Lindstrom, Trygve Nilsen, Paulo Ruffino, Isaac Saias, Clint Scovel, Jan Uboe, Suleyman Ustunel, Qinghua Zhang, Tusheng Zhang and Vic tor Daniel Zurkowski. I am grateful to them all for their help. My special thanks go to Hakon Nyhus, who carefully read large portions of the manuscript and gave me a long list of improvements, as well as many other useful suggestions. Finally I wish to express my gratitude to Tove Moller and Dina Haraldsson, who typed the manuscript with impressive proficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03185-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858660</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423243 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662031858 9783540602439 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858660 |
oclc_num | 863960322 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 271 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Øksendal, Bernt Verfasser aut Stochastic Differential Equations An Introduction with Applications by Bernt Øksendal Fourth Edition Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (XVI, 271 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 In this edition I have added some material which is particularlly useful for the applications, namely the martingale representation theorem (Chapter IV), the variational inequalities associated to optimal stopping problems (Chapter X) and stochastic control with terminal conditions (Chapter XI). In addition solutions and extra hints to some of the exercises are now included. Moreover, the proof and the discussion of the Girsanov theorem have been changed in order to make it more easy to apply, e.g. in economics. And the presentation in general has been corrected and revised throughout the text, in order to make the book better and more useful. During this work I have benefitted from valuable comments from several per sons, including Knut Aase, Sigmund Berntsen, Mark H. A. Davis, Helge Holden, Yaozhong Hu, Tom Lindstrom, Trygve Nilsen, Paulo Ruffino, Isaac Saias, Clint Scovel, Jan Uboe, Suleyman Ustunel, Qinghua Zhang, Tusheng Zhang and Vic tor Daniel Zurkowski. I am grateful to them all for their help. My special thanks go to Hakon Nyhus, who carefully read large portions of the manuscript and gave me a long list of improvements, as well as many other useful suggestions. Finally I wish to express my gratitude to Tove Moller and Dina Haraldsson, who typed the manuscript with impressive proficiency Mathematics Global analysis (Mathematics) Engineering mathematics Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Mathematik Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 s 1\p DE-604 https://doi.org/10.1007/978-3-662-03185-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Øksendal, Bernt Stochastic Differential Equations An Introduction with Applications Mathematics Global analysis (Mathematics) Engineering mathematics Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Mathematik Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
subject_GND | (DE-588)4057621-8 |
title | Stochastic Differential Equations An Introduction with Applications |
title_auth | Stochastic Differential Equations An Introduction with Applications |
title_exact_search | Stochastic Differential Equations An Introduction with Applications |
title_full | Stochastic Differential Equations An Introduction with Applications by Bernt Øksendal |
title_fullStr | Stochastic Differential Equations An Introduction with Applications by Bernt Øksendal |
title_full_unstemmed | Stochastic Differential Equations An Introduction with Applications by Bernt Øksendal |
title_short | Stochastic Differential Equations |
title_sort | stochastic differential equations an introduction with applications |
title_sub | An Introduction with Applications |
topic | Mathematics Global analysis (Mathematics) Engineering mathematics Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Mathematik Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Engineering mathematics Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Mathematik Stochastische Differentialgleichung |
url | https://doi.org/10.1007/978-3-662-03185-8 |
work_keys_str_mv | AT øksendalbernt stochasticdifferentialequationsanintroductionwithapplications |