Finite Model Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Schriftenreihe: | Perspectives in Mathematical Logic
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Finite model theory has its origins in classical model theory, but owes its systematic development to research from complexity theory. The book presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. Other topics include DATALOG languages, quantifiers and oracles, 0-1 laws, and optimization and approximation problems. The book is written in such a way that the resp. parts on model theory and descriptive complexity theory may be read independently |
Beschreibung: | 1 Online-Ressource (XV, 327 p) |
ISBN: | 9783662031827 9783662031841 |
ISSN: | 0172-6641 |
DOI: | 10.1007/978-3-662-03182-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423242 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783662031827 |c Online |9 978-3-662-03182-7 | ||
020 | |a 9783662031841 |c Print |9 978-3-662-03184-1 | ||
024 | 7 | |a 10.1007/978-3-662-03182-7 |2 doi | |
035 | |a (OCoLC)864079708 | ||
035 | |a (DE-599)BVBBV042423242 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ebbinghaus, Heinz-Dieter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Model Theory |c by Heinz-Dieter Ebbinghaus, Jörg Flum |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (XV, 327 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Perspectives in Mathematical Logic |x 0172-6641 | |
500 | |a Finite model theory has its origins in classical model theory, but owes its systematic development to research from complexity theory. The book presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. Other topics include DATALOG languages, quantifiers and oracles, 0-1 laws, and optimization and approximation problems. The book is written in such a way that the resp. parts on model theory and descriptive complexity theory may be read independently | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer software | |
650 | 4 | |a Computer science | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Algorithm Analysis and Problem Complexity | |
650 | 4 | |a Mathematical Logic and Formal Languages | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Modelltheorie |0 (DE-588)4114617-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Modelltheorie |0 (DE-588)4615978-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modelltheorie |0 (DE-588)4114617-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Endliche Modelltheorie |0 (DE-588)4615978-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Flum, Jörg |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03182-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858659 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098744102912 |
---|---|
any_adam_object | |
author | Ebbinghaus, Heinz-Dieter |
author_facet | Ebbinghaus, Heinz-Dieter |
author_role | aut |
author_sort | Ebbinghaus, Heinz-Dieter |
author_variant | h d e hde |
building | Verbundindex |
bvnumber | BV042423242 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864079708 (DE-599)BVBBV042423242 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03182-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02851nmm a2200577zc 4500</leader><controlfield tag="001">BV042423242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662031827</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03182-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662031841</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-03184-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03182-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864079708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ebbinghaus, Heinz-Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Model Theory</subfield><subfield code="c">by Heinz-Dieter Ebbinghaus, Jörg Flum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 327 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in Mathematical Logic</subfield><subfield code="x">0172-6641</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Finite model theory has its origins in classical model theory, but owes its systematic development to research from complexity theory. The book presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. Other topics include DATALOG languages, quantifiers and oracles, 0-1 laws, and optimization and approximation problems. The book is written in such a way that the resp. parts on model theory and descriptive complexity theory may be read independently</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithm Analysis and Problem Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Formal Languages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Modelltheorie</subfield><subfield code="0">(DE-588)4615978-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modelltheorie</subfield><subfield code="0">(DE-588)4114617-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Endliche Modelltheorie</subfield><subfield code="0">(DE-588)4615978-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flum, Jörg</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03182-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858659</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423242 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662031827 9783662031841 |
issn | 0172-6641 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858659 |
oclc_num | 864079708 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 327 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Perspectives in Mathematical Logic |
spelling | Ebbinghaus, Heinz-Dieter Verfasser aut Finite Model Theory by Heinz-Dieter Ebbinghaus, Jörg Flum Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (XV, 327 p) txt rdacontent c rdamedia cr rdacarrier Perspectives in Mathematical Logic 0172-6641 Finite model theory has its origins in classical model theory, but owes its systematic development to research from complexity theory. The book presents the main results of descriptive complexity theory, that is, the connections between axiomatizability of classes of finite structures and their complexity with respect to time and space bounds. The logics that are important in this context include fixed-point logics, transitive closure logics, and also certain infinitary languages; their model theory is studied in full detail. Other topics include DATALOG languages, quantifiers and oracles, 0-1 laws, and optimization and approximation problems. The book is written in such a way that the resp. parts on model theory and descriptive complexity theory may be read independently Mathematics Computer software Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Algorithm Analysis and Problem Complexity Mathematical Logic and Formal Languages Informatik Mathematik Modelltheorie (DE-588)4114617-7 gnd rswk-swf Endliche Modelltheorie (DE-588)4615978-2 gnd rswk-swf Modelltheorie (DE-588)4114617-7 s 1\p DE-604 Endliche Modelltheorie (DE-588)4615978-2 s 2\p DE-604 Flum, Jörg Sonstige oth https://doi.org/10.1007/978-3-662-03182-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ebbinghaus, Heinz-Dieter Finite Model Theory Mathematics Computer software Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Algorithm Analysis and Problem Complexity Mathematical Logic and Formal Languages Informatik Mathematik Modelltheorie (DE-588)4114617-7 gnd Endliche Modelltheorie (DE-588)4615978-2 gnd |
subject_GND | (DE-588)4114617-7 (DE-588)4615978-2 |
title | Finite Model Theory |
title_auth | Finite Model Theory |
title_exact_search | Finite Model Theory |
title_full | Finite Model Theory by Heinz-Dieter Ebbinghaus, Jörg Flum |
title_fullStr | Finite Model Theory by Heinz-Dieter Ebbinghaus, Jörg Flum |
title_full_unstemmed | Finite Model Theory by Heinz-Dieter Ebbinghaus, Jörg Flum |
title_short | Finite Model Theory |
title_sort | finite model theory |
topic | Mathematics Computer software Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Algorithm Analysis and Problem Complexity Mathematical Logic and Formal Languages Informatik Mathematik Modelltheorie (DE-588)4114617-7 gnd Endliche Modelltheorie (DE-588)4615978-2 gnd |
topic_facet | Mathematics Computer software Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Algorithm Analysis and Problem Complexity Mathematical Logic and Formal Languages Informatik Mathematik Modelltheorie Endliche Modelltheorie |
url | https://doi.org/10.1007/978-3-662-03182-7 |
work_keys_str_mv | AT ebbinghausheinzdieter finitemodeltheory AT flumjorg finitemodeltheory |