Representation Theory and Noncommutative Harmonic Analysis I: Fundamental Concepts. Representations of Virasoro and Affine Algebras
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
22 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The second part of the book deals with representations of Virasoro and Kac-Moody algebra. The wealth of recent results on representations of infinite-dimensional groups is presented |
Beschreibung: | 1 Online-Ressource (VIII, 236 p) |
ISBN: | 9783662030028 9783642057403 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-03002-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423233 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783662030028 |c Online |9 978-3-662-03002-8 | ||
020 | |a 9783642057403 |c Print |9 978-3-642-05740-3 | ||
024 | 7 | |a 10.1007/978-3-662-03002-8 |2 doi | |
035 | |a (OCoLC)863972148 | ||
035 | |a (DE-599)BVBBV042423233 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kirillov, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Representation Theory and Noncommutative Harmonic Analysis I |b Fundamental Concepts. Representations of Virasoro and Affine Algebras |c edited by A. A. Kirillov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VIII, 236 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 22 |x 0938-0396 | |
500 | |a Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The second part of the book deals with representations of Virasoro and Kac-Moody algebra. The wealth of recent results on representations of infinite-dimensional groups is presented | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03002-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858650 |
Datensatz im Suchindex
_version_ | 1804153098701111296 |
---|---|
any_adam_object | |
author | Kirillov, A. A. |
author_facet | Kirillov, A. A. |
author_role | aut |
author_sort | Kirillov, A. A. |
author_variant | a a k aa aak |
building | Verbundindex |
bvnumber | BV042423233 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863972148 (DE-599)BVBBV042423233 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03002-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02545nmm a2200505zcb4500</leader><controlfield tag="001">BV042423233</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662030028</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03002-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642057403</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05740-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03002-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863972148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423233</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirillov, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation Theory and Noncommutative Harmonic Analysis I</subfield><subfield code="b">Fundamental Concepts. Representations of Virasoro and Affine Algebras</subfield><subfield code="c">edited by A. A. Kirillov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 236 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">22</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The second part of the book deals with representations of Virasoro and Kac-Moody algebra. The wealth of recent results on representations of infinite-dimensional groups is presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03002-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858650</subfield></datafield></record></collection> |
id | DE-604.BV042423233 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662030028 9783642057403 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858650 |
oclc_num | 863972148 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 236 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Kirillov, A. A. Verfasser aut Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras edited by A. A. Kirillov Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VIII, 236 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 22 0938-0396 Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The second part of the book deals with representations of Virasoro and Kac-Moody algebra. The wealth of recent results on representations of infinite-dimensional groups is presented Mathematics Group theory Topological Groups Mathematical physics Topological Groups, Lie Groups Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Group Theory and Generalizations Mathematik Mathematische Physik https://doi.org/10.1007/978-3-662-03002-8 Verlag Volltext |
spellingShingle | Kirillov, A. A. Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras Mathematics Group theory Topological Groups Mathematical physics Topological Groups, Lie Groups Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Group Theory and Generalizations Mathematik Mathematische Physik |
title | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras |
title_auth | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras |
title_exact_search | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras |
title_full | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras edited by A. A. Kirillov |
title_fullStr | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras edited by A. A. Kirillov |
title_full_unstemmed | Representation Theory and Noncommutative Harmonic Analysis I Fundamental Concepts. Representations of Virasoro and Affine Algebras edited by A. A. Kirillov |
title_short | Representation Theory and Noncommutative Harmonic Analysis I |
title_sort | representation theory and noncommutative harmonic analysis i fundamental concepts representations of virasoro and affine algebras |
title_sub | Fundamental Concepts. Representations of Virasoro and Affine Algebras |
topic | Mathematics Group theory Topological Groups Mathematical physics Topological Groups, Lie Groups Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Group Theory and Generalizations Mathematik Mathematische Physik |
topic_facet | Mathematics Group theory Topological Groups Mathematical physics Topological Groups, Lie Groups Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Group Theory and Generalizations Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-3-662-03002-8 |
work_keys_str_mv | AT kirillovaa representationtheoryandnoncommutativeharmonicanalysisifundamentalconceptsrepresentationsofvirasoroandaffinealgebras |