Convex Analysis and Minimization Algorithms I: Fundamentals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
305 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books |
Beschreibung: | 1 Online-Ressource (XVIII, 418 p) |
ISBN: | 9783662027967 9783642081613 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-02796-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423216 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783662027967 |c Online |9 978-3-662-02796-7 | ||
020 | |a 9783642081613 |c Print |9 978-3-642-08161-3 | ||
024 | 7 | |a 10.1007/978-3-662-02796-7 |2 doi | |
035 | |a (OCoLC)863887175 | ||
035 | |a (DE-599)BVBBV042423216 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hiriart-Urruty, Jean-Baptiste |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convex Analysis and Minimization Algorithms I |b Fundamentals |c by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (XVIII, 418 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 305 |x 0072-7830 | |
500 | |a Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Lemaréchal, Claude |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02796-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858633 |
Datensatz im Suchindex
_version_ | 1804153098688528384 |
---|---|
any_adam_object | |
author | Hiriart-Urruty, Jean-Baptiste |
author_facet | Hiriart-Urruty, Jean-Baptiste |
author_role | aut |
author_sort | Hiriart-Urruty, Jean-Baptiste |
author_variant | j b h u jbhu |
building | Verbundindex |
bvnumber | BV042423216 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863887175 (DE-599)BVBBV042423216 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-02796-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02477nmm a2200457zcb4500</leader><controlfield tag="001">BV042423216</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662027967</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02796-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081613</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08161-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02796-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863887175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423216</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hiriart-Urruty, Jean-Baptiste</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex Analysis and Minimization Algorithms I</subfield><subfield code="b">Fundamentals</subfield><subfield code="c">by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 418 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">305</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lemaréchal, Claude</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02796-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858633</subfield></datafield></record></collection> |
id | DE-604.BV042423216 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662027967 9783642081613 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858633 |
oclc_num | 863887175 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 418 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Hiriart-Urruty, Jean-Baptiste Verfasser aut Convex Analysis and Minimization Algorithms I Fundamentals by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (XVIII, 418 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 305 0072-7830 Convex Analysis may be considered as a refinement of standard calculus, with equalities and approximations replaced by inequalities. As such, it can easily be integrated into a graduate study curriculum. Minimization algorithms, more specifically those adapted to non-differentiable functions, provide an immediate application of convex analysis to various fields related to optimization and operations research. These two topics making up the title of the book, reflect the two origins of the authors, who belong respectively to the academic world and to that of applications. Part I can be used as an introductory textbook (as a basis for courses, or for self-study); Part II continues this at a higher technical level and is addressed more to specialists, collecting results that so far have not appeared in books Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Operations Research, Management Science Systems Theory, Control Mathematik Lemaréchal, Claude Sonstige oth https://doi.org/10.1007/978-3-662-02796-7 Verlag Volltext |
spellingShingle | Hiriart-Urruty, Jean-Baptiste Convex Analysis and Minimization Algorithms I Fundamentals Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Operations Research, Management Science Systems Theory, Control Mathematik |
title | Convex Analysis and Minimization Algorithms I Fundamentals |
title_auth | Convex Analysis and Minimization Algorithms I Fundamentals |
title_exact_search | Convex Analysis and Minimization Algorithms I Fundamentals |
title_full | Convex Analysis and Minimization Algorithms I Fundamentals by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal |
title_fullStr | Convex Analysis and Minimization Algorithms I Fundamentals by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal |
title_full_unstemmed | Convex Analysis and Minimization Algorithms I Fundamentals by Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal |
title_short | Convex Analysis and Minimization Algorithms I |
title_sort | convex analysis and minimization algorithms i fundamentals |
title_sub | Fundamentals |
topic | Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Operations Research, Management Science Systems Theory, Control Mathematik |
topic_facet | Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Operations Research, Management Science Systems Theory, Control Mathematik |
url | https://doi.org/10.1007/978-3-662-02796-7 |
work_keys_str_mv | AT hiriarturrutyjeanbaptiste convexanalysisandminimizationalgorithmsifundamentals AT lemarechalclaude convexanalysisandminimizationalgorithmsifundamentals |