Arrangements of Hyperplanes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
300 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject |
Beschreibung: | 1 Online-Ressource (XVIII, 325 p) |
ISBN: | 9783662027721 9783642081378 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-02772-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423212 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783662027721 |c Online |9 978-3-662-02772-1 | ||
020 | |a 9783642081378 |c Print |9 978-3-642-08137-8 | ||
024 | 7 | |a 10.1007/978-3-662-02772-1 |2 doi | |
035 | |a (OCoLC)1165449972 | ||
035 | |a (DE-599)BVBBV042423212 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Orlik, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Arrangements of Hyperplanes |c by Peter Orlik, Hiroaki Terao |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (XVIII, 325 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 300 |x 0072-7830 | |
500 | |a An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hyperebene |0 (DE-588)4161050-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperfläche |0 (DE-588)4161054-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anordnung |g Mathematik |0 (DE-588)4211643-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Geometrie |0 (DE-588)4140733-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gittertheorie |0 (DE-588)4157394-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anordnung |0 (DE-588)4142560-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperebene |0 (DE-588)4161050-7 |D s |
689 | 0 | 1 | |a Anordnung |0 (DE-588)4142560-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperebene |0 (DE-588)4161050-7 |D s |
689 | 1 | 1 | |a Kombinatorische Geometrie |0 (DE-588)4140733-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Anordnung |g Mathematik |0 (DE-588)4211643-0 |D s |
689 | 2 | 1 | |a Hyperebene |0 (DE-588)4161050-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Gittertheorie |0 (DE-588)4157394-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Hyperfläche |0 (DE-588)4161054-4 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
700 | 1 | |a Terao, Hiroaki |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02772-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858629 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098679091200 |
---|---|
any_adam_object | |
author | Orlik, Peter |
author_facet | Orlik, Peter |
author_role | aut |
author_sort | Orlik, Peter |
author_variant | p o po |
building | Verbundindex |
bvnumber | BV042423212 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165449972 (DE-599)BVBBV042423212 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-02772-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04329nmm a2200781zcb4500</leader><controlfield tag="001">BV042423212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662027721</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02772-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081378</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08137-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02772-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165449972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423212</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orlik, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arrangements of Hyperplanes</subfield><subfield code="c">by Peter Orlik, Hiroaki Terao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 325 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">300</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anordnung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4211643-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Geometrie</subfield><subfield code="0">(DE-588)4140733-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anordnung</subfield><subfield code="0">(DE-588)4142560-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anordnung</subfield><subfield code="0">(DE-588)4142560-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kombinatorische Geometrie</subfield><subfield code="0">(DE-588)4140733-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Anordnung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4211643-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Hyperebene</subfield><subfield code="0">(DE-588)4161050-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Hyperfläche</subfield><subfield code="0">(DE-588)4161054-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Terao, Hiroaki</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02772-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858629</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423212 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662027721 9783642081378 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858629 |
oclc_num | 1165449972 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 325 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Orlik, Peter Verfasser aut Arrangements of Hyperplanes by Peter Orlik, Hiroaki Terao Berlin, Heidelberg Springer Berlin Heidelberg 1992 1 Online-Ressource (XVIII, 325 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 300 0072-7830 An arrangement of hyperplanes is a finite collection of codimension one affine subspaces in a finite dimensional vector space. Arrangements have emerged independently as important objects in various fields of mathematics such as combinatorics, braids, configuration spaces, representation theory, reflection groups, singularity theory, and in computer science and physics. This book is the first comprehensive study of the subject. It treats arrangements with methods from combinatorics, algebra, algebraic geometry, topology, and group actions. It emphasizes general techniques which illuminate the connections among the different aspects of the subject. Its main purpose is to lay the foundations of the theory. Consequently, it is essentially self-contained and proofs are provided. Nevertheless, there are several new results here. In particular, many theorems that were previously known only for central arrangements are proved here for the first time in completegenerality. The text provides the advanced graduate student entry into a vital and active area of research. The working mathematician will findthe book useful as a source of basic results of the theory, open problems, and a comprehensive bibliography of the subject Mathematics Geometry, algebraic Differential equations, partial Algebraic topology Cell aggregation / Mathematics Algebraic Topology Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Several Complex Variables and Analytic Spaces Mathematik Hyperebene (DE-588)4161050-7 gnd rswk-swf Hyperfläche (DE-588)4161054-4 gnd rswk-swf Anordnung Mathematik (DE-588)4211643-0 gnd rswk-swf Kombinatorische Geometrie (DE-588)4140733-7 gnd rswk-swf Gittertheorie (DE-588)4157394-8 gnd rswk-swf Anordnung (DE-588)4142560-1 gnd rswk-swf Hyperebene (DE-588)4161050-7 s Anordnung (DE-588)4142560-1 s 1\p DE-604 Kombinatorische Geometrie (DE-588)4140733-7 s 2\p DE-604 Anordnung Mathematik (DE-588)4211643-0 s 3\p DE-604 Gittertheorie (DE-588)4157394-8 s 4\p DE-604 Hyperfläche (DE-588)4161054-4 s 5\p DE-604 Terao, Hiroaki Sonstige oth https://doi.org/10.1007/978-3-662-02772-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Orlik, Peter Arrangements of Hyperplanes Mathematics Geometry, algebraic Differential equations, partial Algebraic topology Cell aggregation / Mathematics Algebraic Topology Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Several Complex Variables and Analytic Spaces Mathematik Hyperebene (DE-588)4161050-7 gnd Hyperfläche (DE-588)4161054-4 gnd Anordnung Mathematik (DE-588)4211643-0 gnd Kombinatorische Geometrie (DE-588)4140733-7 gnd Gittertheorie (DE-588)4157394-8 gnd Anordnung (DE-588)4142560-1 gnd |
subject_GND | (DE-588)4161050-7 (DE-588)4161054-4 (DE-588)4211643-0 (DE-588)4140733-7 (DE-588)4157394-8 (DE-588)4142560-1 |
title | Arrangements of Hyperplanes |
title_auth | Arrangements of Hyperplanes |
title_exact_search | Arrangements of Hyperplanes |
title_full | Arrangements of Hyperplanes by Peter Orlik, Hiroaki Terao |
title_fullStr | Arrangements of Hyperplanes by Peter Orlik, Hiroaki Terao |
title_full_unstemmed | Arrangements of Hyperplanes by Peter Orlik, Hiroaki Terao |
title_short | Arrangements of Hyperplanes |
title_sort | arrangements of hyperplanes |
topic | Mathematics Geometry, algebraic Differential equations, partial Algebraic topology Cell aggregation / Mathematics Algebraic Topology Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Several Complex Variables and Analytic Spaces Mathematik Hyperebene (DE-588)4161050-7 gnd Hyperfläche (DE-588)4161054-4 gnd Anordnung Mathematik (DE-588)4211643-0 gnd Kombinatorische Geometrie (DE-588)4140733-7 gnd Gittertheorie (DE-588)4157394-8 gnd Anordnung (DE-588)4142560-1 gnd |
topic_facet | Mathematics Geometry, algebraic Differential equations, partial Algebraic topology Cell aggregation / Mathematics Algebraic Topology Algebraic Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Several Complex Variables and Analytic Spaces Mathematik Hyperebene Hyperfläche Anordnung Mathematik Kombinatorische Geometrie Gittertheorie Anordnung |
url | https://doi.org/10.1007/978-3-662-02772-1 |
work_keys_str_mv | AT orlikpeter arrangementsofhyperplanes AT teraohiroaki arrangementsofhyperplanes |