Hilbert Modular Forms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra |
Beschreibung: | 1 Online-Ressource (VIII, 252 p) |
ISBN: | 9783662026380 9783642080722 |
DOI: | 10.1007/978-3-662-02638-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423204 | ||
003 | DE-604 | ||
005 | 20180207 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783662026380 |c Online |9 978-3-662-02638-0 | ||
020 | |a 9783642080722 |c Print |9 978-3-642-08072-2 | ||
024 | 7 | |a 10.1007/978-3-662-02638-0 |2 doi | |
035 | |a (OCoLC)863886917 | ||
035 | |a (DE-599)BVBBV042423204 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Freitag, Eberhard |d 1942- |e Verfasser |0 (DE-588)142950017 |4 aut | |
245 | 1 | 0 | |a Hilbert Modular Forms |c by Eberhard Freitag |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (VIII, 252 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Number theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hilbertsche Modulform |0 (DE-588)4159855-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbertsche Modulgruppe |0 (DE-588)4159858-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hilbertsche Modulgruppe |0 (DE-588)4159858-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hilbertsche Modulform |0 (DE-588)4159855-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02638-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858621 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098663362560 |
---|---|
any_adam_object | |
author | Freitag, Eberhard 1942- |
author_GND | (DE-588)142950017 |
author_facet | Freitag, Eberhard 1942- |
author_role | aut |
author_sort | Freitag, Eberhard 1942- |
author_variant | e f ef |
building | Verbundindex |
bvnumber | BV042423204 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863886917 (DE-599)BVBBV042423204 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-02638-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02856nmm a2200517zc 4500</leader><controlfield tag="001">BV042423204</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662026380</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02638-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642080722</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08072-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02638-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863886917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423204</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freitag, Eberhard</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142950017</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert Modular Forms</subfield><subfield code="c">by Eberhard Freitag</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 252 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsche Modulform</subfield><subfield code="0">(DE-588)4159855-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsche Modulgruppe</subfield><subfield code="0">(DE-588)4159858-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbertsche Modulgruppe</subfield><subfield code="0">(DE-588)4159858-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbertsche Modulform</subfield><subfield code="0">(DE-588)4159855-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02638-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858621</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423204 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662026380 9783642080722 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858621 |
oclc_num | 863886917 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 252 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Freitag, Eberhard 1942- Verfasser (DE-588)142950017 aut Hilbert Modular Forms by Eberhard Freitag Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (VIII, 252 p) txt rdacontent c rdamedia cr rdacarrier Important results on the Hilbert modular group and Hilbert modular forms are introduced and described in this book. In recent times, this branch of number theory has been given more and more attention and thus the need for a comprehensive presentation of these results, previously scattered in research journal papers, has become obvious. The main aim of this book is to give a description of the singular cohomology and its Hodge decomposition including explicit formulae. The author has succeeded in giving proofs which are both elementary and complete. The book contains an introduction to Hilbert modular forms, reduction theory, the trace formula and Shimizu's formulae, the work of Matsushima and Shimura, analytic continuation of Eisenstein series, the cohomology and its Hodge decomposition. Basic facts about algebraic numbers, integration, alternating differential forms and Hodge theory are included in convenient appendices so that the book can be used by students with a knowledge of complex analysis (one variable) and algebra Mathematics Group theory Number theory Group Theory and Generalizations Number Theory Mathematik Hilbertsche Modulform (DE-588)4159855-6 gnd rswk-swf Hilbertsche Modulgruppe (DE-588)4159858-1 gnd rswk-swf Hilbertsche Modulgruppe (DE-588)4159858-1 s 1\p DE-604 Hilbertsche Modulform (DE-588)4159855-6 s 2\p DE-604 https://doi.org/10.1007/978-3-662-02638-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Freitag, Eberhard 1942- Hilbert Modular Forms Mathematics Group theory Number theory Group Theory and Generalizations Number Theory Mathematik Hilbertsche Modulform (DE-588)4159855-6 gnd Hilbertsche Modulgruppe (DE-588)4159858-1 gnd |
subject_GND | (DE-588)4159855-6 (DE-588)4159858-1 |
title | Hilbert Modular Forms |
title_auth | Hilbert Modular Forms |
title_exact_search | Hilbert Modular Forms |
title_full | Hilbert Modular Forms by Eberhard Freitag |
title_fullStr | Hilbert Modular Forms by Eberhard Freitag |
title_full_unstemmed | Hilbert Modular Forms by Eberhard Freitag |
title_short | Hilbert Modular Forms |
title_sort | hilbert modular forms |
topic | Mathematics Group theory Number theory Group Theory and Generalizations Number Theory Mathematik Hilbertsche Modulform (DE-588)4159855-6 gnd Hilbertsche Modulgruppe (DE-588)4159858-1 gnd |
topic_facet | Mathematics Group theory Number theory Group Theory and Generalizations Number Theory Mathematik Hilbertsche Modulform Hilbertsche Modulgruppe |
url | https://doi.org/10.1007/978-3-662-02638-0 |
work_keys_str_mv | AT freitageberhard hilbertmodularforms |