Etale Cohomology and the Weil Conjecture:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics
13 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjectures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as selfcontained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work |
Beschreibung: | 1 Online-Ressource (XVIII, 320 p) |
ISBN: | 9783662025413 9783662025437 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-662-02541-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423199 | ||
003 | DE-604 | ||
005 | 20180312 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783662025413 |c Online |9 978-3-662-02541-3 | ||
020 | |a 9783662025437 |c Print |9 978-3-662-02543-7 | ||
024 | 7 | |a 10.1007/978-3-662-02541-3 |2 doi | |
035 | |a (OCoLC)863879912 | ||
035 | |a (DE-599)BVBBV042423199 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.34 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Freitag, Eberhard |d 1946- |e Verfasser |0 (DE-588)139119930 |4 aut | |
245 | 1 | 0 | |a Etale Cohomology and the Weil Conjecture |c by Eberhard Freitag, Reinhardt Kiehl |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (XVIII, 320 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |v 13 |x 0071-1136 | |
500 | |a Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjectures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as selfcontained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Etalkohomologie |0 (DE-588)4153071-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weil-Vermutung |0 (DE-588)4189446-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Weil-Vermutung |0 (DE-588)4189446-7 |D s |
689 | 0 | 1 | |a Etalkohomologie |0 (DE-588)4153071-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kiehl, Reinhardt |d 1935- |e Sonstige |0 (DE-588)1103675672 |4 oth | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |v 13 |w (DE-604)BV036692629 |9 13 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02541-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858616 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098653925376 |
---|---|
any_adam_object | |
author | Freitag, Eberhard 1946- |
author_GND | (DE-588)139119930 (DE-588)1103675672 |
author_facet | Freitag, Eberhard 1946- |
author_role | aut |
author_sort | Freitag, Eberhard 1946- |
author_variant | e f ef |
building | Verbundindex |
bvnumber | BV042423199 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863879912 (DE-599)BVBBV042423199 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-02541-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03540nmm a2200505zcb4500</leader><controlfield tag="001">BV042423199</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180312 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662025413</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02541-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662025437</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-02543-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02541-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863879912</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423199</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freitag, Eberhard</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139119930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Etale Cohomology and the Weil Conjecture</subfield><subfield code="c">by Eberhard Freitag, Reinhardt Kiehl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 320 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics</subfield><subfield code="v">13</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjectures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as selfcontained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Etalkohomologie</subfield><subfield code="0">(DE-588)4153071-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weil-Vermutung</subfield><subfield code="0">(DE-588)4189446-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Weil-Vermutung</subfield><subfield code="0">(DE-588)4189446-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Etalkohomologie</subfield><subfield code="0">(DE-588)4153071-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiehl, Reinhardt</subfield><subfield code="d">1935-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1103675672</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV036692629</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02541-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858616</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423199 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662025413 9783662025437 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858616 |
oclc_num | 863879912 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 320 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics |
spelling | Freitag, Eberhard 1946- Verfasser (DE-588)139119930 aut Etale Cohomology and the Weil Conjecture by Eberhard Freitag, Reinhardt Kiehl Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (XVIII, 320 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics 13 0071-1136 Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjectures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as selfcontained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Etalkohomologie (DE-588)4153071-8 gnd rswk-swf Weil-Vermutung (DE-588)4189446-7 gnd rswk-swf Weil-Vermutung (DE-588)4189446-7 s Etalkohomologie (DE-588)4153071-8 s 1\p DE-604 Kiehl, Reinhardt 1935- Sonstige (DE-588)1103675672 oth Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics 13 (DE-604)BV036692629 13 https://doi.org/10.1007/978-3-662-02541-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Freitag, Eberhard 1946- Etale Cohomology and the Weil Conjecture Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Etalkohomologie (DE-588)4153071-8 gnd Weil-Vermutung (DE-588)4189446-7 gnd |
subject_GND | (DE-588)4153071-8 (DE-588)4189446-7 |
title | Etale Cohomology and the Weil Conjecture |
title_auth | Etale Cohomology and the Weil Conjecture |
title_exact_search | Etale Cohomology and the Weil Conjecture |
title_full | Etale Cohomology and the Weil Conjecture by Eberhard Freitag, Reinhardt Kiehl |
title_fullStr | Etale Cohomology and the Weil Conjecture by Eberhard Freitag, Reinhardt Kiehl |
title_full_unstemmed | Etale Cohomology and the Weil Conjecture by Eberhard Freitag, Reinhardt Kiehl |
title_short | Etale Cohomology and the Weil Conjecture |
title_sort | etale cohomology and the weil conjecture |
topic | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Etalkohomologie (DE-588)4153071-8 gnd Weil-Vermutung (DE-588)4189446-7 gnd |
topic_facet | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Etalkohomologie Weil-Vermutung |
url | https://doi.org/10.1007/978-3-662-02541-3 |
volume_link | (DE-604)BV036692629 |
work_keys_str_mv | AT freitageberhard etalecohomologyandtheweilconjecture AT kiehlreinhardt etalecohomologyandtheweilconjecture |