Boolean Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1960
|
Ausgabe: | Second Edition |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" : Neue Folge
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | There are two aspects to the theory of Boolean algebras; the algebraic and the set-theoretical. A Boolean algebra can be considered as a special kind of algebraic ring, or as a generalization of the set-theoretical notion of a field of sets. Fundamental theorems in both of these directions are due to M. H. STONE, whose papers have opened a new era in the development of this theory. This work treats the set-theoretical aspect, with little mention being made of the algebraic one. The book is composed of two chapters and an appendix. Chapter I is devoted to the study of Boolean algebras from the point of view of finite Boolean operations only; a greater part of its contents can be found in the books of BIRKHOFF [2] and HERMES [1]. Chapter II seems to be the first systematic study of Boolean algebras with infinite Boolean operations. To understand Chapters I and II it suffices only to know fundamental notions from general set theory and set-theoretical topology. No knowledge of lattice theory or of abstract algebra is presumed. Less familiar topological theorems are recalled, and only a few examples use more advanced topological means; but these may be omitted. All theorems in both chapters are given with full proofs |
Beschreibung: | 1 Online-Ressource (X, 237 p) |
ISBN: | 9783662015070 9783662015094 |
DOI: | 10.1007/978-3-662-01507-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423188 | ||
003 | DE-604 | ||
005 | 20171009 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1960 |||| o||u| ||||||eng d | ||
020 | |a 9783662015070 |c Online |9 978-3-662-01507-0 | ||
020 | |a 9783662015094 |c Print |9 978-3-662-01509-4 | ||
024 | 7 | |a 10.1007/978-3-662-01507-0 |2 doi | |
035 | |a (OCoLC)1184500415 | ||
035 | |a (DE-599)BVBBV042423188 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sikorski, Roman |d 1920-1983 |e Verfasser |0 (DE-588)1035622769 |4 aut | |
245 | 1 | 0 | |a Boolean Algebras |c by Roman Sikorski |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1960 | |
300 | |a 1 Online-Ressource (X, 237 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" : Neue Folge |v 25 | |
500 | |a There are two aspects to the theory of Boolean algebras; the algebraic and the set-theoretical. A Boolean algebra can be considered as a special kind of algebraic ring, or as a generalization of the set-theoretical notion of a field of sets. Fundamental theorems in both of these directions are due to M. H. STONE, whose papers have opened a new era in the development of this theory. This work treats the set-theoretical aspect, with little mention being made of the algebraic one. The book is composed of two chapters and an appendix. Chapter I is devoted to the study of Boolean algebras from the point of view of finite Boolean operations only; a greater part of its contents can be found in the books of BIRKHOFF [2] and HERMES [1]. Chapter II seems to be the first systematic study of Boolean algebras with infinite Boolean operations. To understand Chapters I and II it suffices only to know fundamental notions from general set theory and set-theoretical topology. No knowledge of lattice theory or of abstract algebra is presumed. Less familiar topological theorems are recalled, and only a few examples use more advanced topological means; but these may be omitted. All theorems in both chapters are given with full proofs | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematical Logic and Formal Languages | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Boolesche Algebra |0 (DE-588)4146280-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Boolescher Verband |0 (DE-588)4146289-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Boolesche Algebra |0 (DE-588)4146280-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Boolescher Verband |0 (DE-588)4146289-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
810 | 2 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" |t Neue Folge |v 25 |w (DE-604)BV005871160 |9 25 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-01507-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858605 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098630856704 |
---|---|
any_adam_object | |
author | Sikorski, Roman 1920-1983 |
author_GND | (DE-588)1035622769 |
author_facet | Sikorski, Roman 1920-1983 |
author_role | aut |
author_sort | Sikorski, Roman 1920-1983 |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV042423188 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184500415 (DE-599)BVBBV042423188 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-01507-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03434nmm a2200565zcb4500</leader><controlfield tag="001">BV042423188</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1960 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662015070</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-01507-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662015094</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-01509-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-01507-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184500415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sikorski, Roman</subfield><subfield code="d">1920-1983</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1035622769</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boolean Algebras</subfield><subfield code="c">by Roman Sikorski</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1960</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 237 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" : Neue Folge</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">There are two aspects to the theory of Boolean algebras; the algebraic and the set-theoretical. A Boolean algebra can be considered as a special kind of algebraic ring, or as a generalization of the set-theoretical notion of a field of sets. Fundamental theorems in both of these directions are due to M. H. STONE, whose papers have opened a new era in the development of this theory. This work treats the set-theoretical aspect, with little mention being made of the algebraic one. The book is composed of two chapters and an appendix. Chapter I is devoted to the study of Boolean algebras from the point of view of finite Boolean operations only; a greater part of its contents can be found in the books of BIRKHOFF [2] and HERMES [1]. Chapter II seems to be the first systematic study of Boolean algebras with infinite Boolean operations. To understand Chapters I and II it suffices only to know fundamental notions from general set theory and set-theoretical topology. No knowledge of lattice theory or of abstract algebra is presumed. Less familiar topological theorems are recalled, and only a few examples use more advanced topological means; but these may be omitted. All theorems in both chapters are given with full proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Formal Languages</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boolescher Verband</subfield><subfield code="0">(DE-588)4146289-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Boolescher Verband</subfield><subfield code="0">(DE-588)4146289-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" </subfield><subfield code="t">Neue Folge</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV005871160</subfield><subfield code="9">25</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-01507-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858605</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423188 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783662015070 9783662015094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858605 |
oclc_num | 1184500415 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 237 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1960 |
publishDateSearch | 1960 |
publishDateSort | 1960 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" : Neue Folge |
spelling | Sikorski, Roman 1920-1983 Verfasser (DE-588)1035622769 aut Boolean Algebras by Roman Sikorski Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1960 1 Online-Ressource (X, 237 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" : Neue Folge 25 There are two aspects to the theory of Boolean algebras; the algebraic and the set-theoretical. A Boolean algebra can be considered as a special kind of algebraic ring, or as a generalization of the set-theoretical notion of a field of sets. Fundamental theorems in both of these directions are due to M. H. STONE, whose papers have opened a new era in the development of this theory. This work treats the set-theoretical aspect, with little mention being made of the algebraic one. The book is composed of two chapters and an appendix. Chapter I is devoted to the study of Boolean algebras from the point of view of finite Boolean operations only; a greater part of its contents can be found in the books of BIRKHOFF [2] and HERMES [1]. Chapter II seems to be the first systematic study of Boolean algebras with infinite Boolean operations. To understand Chapters I and II it suffices only to know fundamental notions from general set theory and set-theoretical topology. No knowledge of lattice theory or of abstract algebra is presumed. Less familiar topological theorems are recalled, and only a few examples use more advanced topological means; but these may be omitted. All theorems in both chapters are given with full proofs Mathematics Computer science Real Functions Mathematics, general Mathematical Logic and Formal Languages Informatik Mathematik Boolesche Algebra (DE-588)4146280-4 gnd rswk-swf Boolescher Verband (DE-588)4146289-0 gnd rswk-swf Boolesche Algebra (DE-588)4146280-4 s 1\p DE-604 Boolescher Verband (DE-588)4146289-0 s 2\p DE-604 Ergebnisse der Mathematik und ihrer Grenzgebiete, Unter Mitwirkung der Schriftleitung des "Zentralblatt für Mathematik" Neue Folge 25 (DE-604)BV005871160 25 https://doi.org/10.1007/978-3-662-01507-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sikorski, Roman 1920-1983 Boolean Algebras Mathematics Computer science Real Functions Mathematics, general Mathematical Logic and Formal Languages Informatik Mathematik Boolesche Algebra (DE-588)4146280-4 gnd Boolescher Verband (DE-588)4146289-0 gnd |
subject_GND | (DE-588)4146280-4 (DE-588)4146289-0 |
title | Boolean Algebras |
title_auth | Boolean Algebras |
title_exact_search | Boolean Algebras |
title_full | Boolean Algebras by Roman Sikorski |
title_fullStr | Boolean Algebras by Roman Sikorski |
title_full_unstemmed | Boolean Algebras by Roman Sikorski |
title_short | Boolean Algebras |
title_sort | boolean algebras |
topic | Mathematics Computer science Real Functions Mathematics, general Mathematical Logic and Formal Languages Informatik Mathematik Boolesche Algebra (DE-588)4146280-4 gnd Boolescher Verband (DE-588)4146289-0 gnd |
topic_facet | Mathematics Computer science Real Functions Mathematics, general Mathematical Logic and Formal Languages Informatik Mathematik Boolesche Algebra Boolescher Verband |
url | https://doi.org/10.1007/978-3-662-01507-0 |
volume_link | (DE-604)BV005871160 |
work_keys_str_mv | AT sikorskiroman booleanalgebras |